• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Infrared spectroscopic studies : from small molecules to large

Eremina, Nadejda January 2014 (has links)
Infrared light (IR) was first discovered by Friedrich Wilhelm Herschel in 1800. However, until 1940’s, molecular IR studies involved only water and small organic molecules, because of the long measurement times. Development Fourier transform infrared spectroscopy (FTIR) has minimized the time required to obtain data, making it possible to investigate bigger biological systems, e.g. proteins and nucleic acids.This thesis concentrates on the applications of different IR spectroscopic techniques to a variety of biological systems and development of new approaches to study complicated biological events. The first paper in this work concerns using so-called caged compounds to study the aggregation of Alzheimer’s Aβ-peptide which is linked to the formation of neurotoxic fibrils in the brain. By adding caged-sulfate to the Aβ samples we were able to change the pH of the sample, while recording IR data and study fibril formation in a time-resolved manner. Then we used caged–ADP to study the production of ATP and creatine, mediated by creatine kinase (CK). Using CK as a helper enzyme we studied the effects of the phosphate binding on the secondary structure of SR Ca2+ATPse and determined the structural differences between two similar states Ca2E1ADP and Ca2E1ATP. In the second part of the thesis we used ATR-FTIR spectroscopy and a specially designed dialysis setup, to develop a general method to detect ligand binding events by observing the IR absorbance changes in the water hydration shell around the molecules. The same method was used to determine the binding of DNA to the transcription factors of the E2F family. E2F proteins play main part in the gene regulatory networks that control cell development. However how they recognize their DNA-binding sites and the mechanism of binding is not well understood. By using ATR-FTIR, we observed the changes in the secondary structure of the proteins, as well as the distortions to the DNA upon E2F-DNA complex formation. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>

Page generated in 0.0316 seconds