Spelling suggestions: "subject:"calcsilicate"" "subject:"calcisilicate""
1 |
Genetical Investigation Of Balya-balikesir Lead-zinc MineralizationsOzisik, Gulsevim 01 January 2009 (has links) (PDF)
This thesis study is concerned with genetical investigation of Balikesir Balya Pb-Zn mineralization through the mineralogic-petrographic and geochemical examination of the core samples obtained from a total of 9 holes drilled by EczacibaSi ESAN Madencilik.
The Pb-Zn mineralization in Balya is mainly of vein-type. Wall rocks hosting mineralizations are dacite, dacite porphyry and microdiorite. Major types of alteration are silicification, carbonatization and calc-silicate alteration, each of which is further subdivided into early and late stages and overprinted by argillic alteration of probable supergene origin. The ore minerals are mainly Zn- and Pb-sulphides and are hosted by the rocks with late calc-silicate alteration that underwent pervasive late silicification and late carbonatization. Sulfide mineralization is spatially and temporally associated with the late silicification and carbonatization stages. Lateral-vertical correlation of drill logs suggest that thickness of the ore zone tends to decrease towards north.
The volcanic rocks hosting the mineralization have calc-alkaline nature. Major, trace and rare earth element (REE) geochemistry suggests either crustal contamination or subduction signature in the mantle source of the volcanics. Multi element patterns and discrimination diagrams collectively point to a post-collisional setting for their generation. Alteration geochemistry reveals that Fe2O3 and CaO are enriched during calc-silicate alteration in contrast to depletion of SiO2. Al2O3 and TiO2 are almost constant during late calc-silicate alteration. Enrichment of Fe2O3 and Na2O, and depletion of K2O characterize the silicified zones. Carbonatization is accompanied by strong enrichment of CaO and depletion of SiO2, Al2O3 and K2O.
|
2 |
Geochemie a vznik skarnů Českého masivu / Geochemistry and origin of skarns of the Bohemian MassifBubal, Jan January 2013 (has links)
Calcic-iron skarns are one of the characteristic part of the regional metamorphic complexes of the Bohemian Massif. Their mineral assemblages, structures and significant enrichment of Ca, Al and Fe were previously interpreted to be primary (exhalation sediment) or secondary (metasomatic carbonates). In this project, which consists of three sub-studies will focus on the geochemical composition of skarn as the main arguments for the discussion of their origin. Malešov deposit belongs to the typical calcic-iron skarns whose mineral assemblages are not very different from similar skarns associations in the Bohemian massif. It consists of lenticular body that is stored in gneiss and migmatites of the Kutná Hora crystalline complex. On the deposit prevails garnet-pyroxen skarn, less abundantly represented garnet and magnetite skarns and skarns replacement by amphibole or epidote. Fine-grained garnet skarns are formed by isotropic dark red garnet (Adr78-88Prp0-0.3), while in massive garnet rocks garnet grains form the core (Adr13-38Prp2.5), which envelop newly formed garnet (Adr28-66Prp1.6). In association with them is often pyroxene (Hd60-90) which can be replaced by hastingsite amphibole composition. Other minerals present are magnetite, Fe-epidote, calcite and albite. Magnetite and pyroxene skarns are...
|
3 |
Magma-Crust Interaction at Subduction Zone VolcanoesJolis, Ester M. January 2013 (has links)
The focus of this work is magma-crust interaction processes and associated crustal volatile release in subduction zone volcanoes, drawing on rock, mineral, and gas geochemistry as well as experimental petrology. Understanding the multitude of differentiation processes that modify an original magma during ascent to the surface is vital to unravel the contributions of the various sources that contribute to the final magmas erupted at volcanoes. In particular, magma-crust interaction (MCI) processes have been investigated at a variety of scales, from a local scale in the Vesuvius, Merapi, and Kelut studies, to a regional scale, in the Java to Bali segment of the Sunda Arc. The role of crustal influences is still not well constrained in subduction systems, particulary in terms of the compositional impact of direct magma crust interplay. To address this shortcoming, we studied marble and calc-silicate (skarn) xenoliths, and used high resolution short timescale experimental petrology at Vesuvius volcano. The marbles and calc-silicates help to identify different mechanisms of magma-carbonate and magma-xenolith interaction, and the subsequent effects of volatile release on potential eruptive behaviour, while sequential short-duration experiments simulate the actual processes of carbonate assimilation employing natural materials and controlled magmatic conditions. The experiments highlight the efficiency of carbonate assimilation and associated carbonate-derived CO2 liberated over short timescales. The findings at Merapi and Kelut demonstrate a complex magmatic plumbing system underneath these volcanoes with magma residing at different depths, spanning from the mantle-crust boundary to the upper crust. The erupted products and volcanic gas emissions enable us to shed light on MCI-processes and associated volatile release in these systems. The knowledge gained from studying individual volcanoes (e.g., Merapi and Kelut) is then tested on a regional scale and applied to the entire Java and Bali arc segment. An attempt is presented to distinguish the extent of source versus crustal influences and establish a quantitative model of late stage crustal influence in this arc segment. This thesis therefore hopes to contribute to our knowledge of magma genesis and magma-crust interaction (MCI) processes that likely operate in subduction zone systems worldwide.
|
4 |
Magma-Carbonate Interaction and CO2 Release: A Case Study from Carlingford Igneous Centre, Ireland / Magma-karbonat-interaktion och CO2-utsläpp: En studie från Carlingford Igneous Centre, IrlandLagrosen, Emelie January 2020 (has links)
Magma which intrudes into carbonate rich crust, interacts with the carbonate in several ways, for example by contact metamorphism and formation of marble or by metasomatism resulting in calc-silicate skarn. These processes release volatiles, such as CO2, from the carbonate and might thus cause climate change. One volcanic complex where the intrusions and their surrounding metamorphic aureole are well exposed and therefore convenient for investigation of magma-carbonate interaction is the Carlingford Igneous Centre in NE of Ireland. The complex is dominated by a gabbro lopolith and a microgranite ring dyke, which intruded into limestone and meta-siltstone at around 62-60 Ma. The purpose of this study is to investigate the extent of magma-carbonate interaction and assess the amount of CO2 which could have been released from the aureole at Carlingford. This is done by analysing major and trace elements as well as carbon and sulphur content in skarn and marble samples from a transect along the calc-silicate metamorphic aureole. The analytical methods used are SEM- EDX, XRF, LA-ICP-MS and carbon and sulphur analyses. The CO2 release is calculated by comparing the carbon and CO2 content in the skarn and marble samples with that in the unmetamorphosed limestone. The results show that the skarn has experienced a strong interaction with the magma, as it contains several high-grade minerals, such as wollastonite, vesuvianite and pyrope, and has lost almost all its carbon. The extent of interaction and amount of CO2 release is generally much lower in the marble, even though a few marble samples show a strong interaction and a high degree of degassing. On the other hand, the amount of marble in the aureole turns out to be significantly higher than the amount of skarn (70-90% compared to 10-30%). The total mass of CO2 release from the calc-silicate aureole is calculated to 0.64-9.06 Gt, where 1.30-2.67 Gt being the most realistic amount. This released CO2 has probably not caused any significant climate change on its own but may have had a small contribution to global warming together with other volcanoes that were active during the same period of time. / Magma som tränger in i karbonatrik jordskorpa, integrerar med karbonaten på flera olika sätt, t.ex. genom kontaktmetamorfos och bildande av marmor eller genom metasomatos, vilket resulterar i kalk-silikatisk skarn. Dessa processer släpper ut flyktiga ämnen, som exempelvis CO2, från karbonaten och kan därmed orsaka klimatförändring. Ett vulkaniskt komplex där intrusioner och deras omgivande metamorfa aureoler är välexponerade och därmed lämpliga för undersökning av magma-karbonat-interaktion är Carlingford Igneous Centre i nordöstra Irland. Komplexet domineras av en gabbro-lopolit och en mikrogranitisk ring-gång, som trängde in i kalksten och metasiltsten för ca 62-60 Ma. Syftet med studien är att undersöka graden av magma-karbonat-interaktion och bedöma mängden CO2 som kan ha släppts ut från aureolen i Carlingford. Detta utförs genom analysering av huvudelement och spårelement samt av kol- och svavelinnehåll i skarn- och marmorprover från en transekt genom den kalk-silikatiska metamorfa aureolen. De analytiska metoder som används är SEM-EDX, XRF, LA-ICP- MS samt kol- och svavelanalyser. Mängden CO2 beräknas genom att jämföra kol- och CO2-innehåll i skarn- och marmorprover med innehållet kol och CO2 i den ickemetamorfa kalkstenen. Resultaten visar att skarn har genomgått en stark interaktion med magman, då bergarten innehåller flera mineral av hög metamorf grad, som exempelvis wollastonit, vesuvianit och pyrop, samt har förlorat nästan allt sitt kol. Graden interaktion och mängden CO2-utsläpp är generellt mycket lägre i marmorn än i skarnen, även fast några marmorprover visar stark interaktion och en stor del avgasning. Å andra sidan är mängden marmor i aureolen signifikant högre än mängden skarn (70-90% jämfört med 10-30%). Den totala massan av CO2-utsläpp från den kalk-silikatiska delen av aureolen är beräknad till 0,64-9,06 Gt, där 1,30-2,67 Gt anses vara den mest realistiska mängden. Detta utsläpp av CO2 har troligtvis inte orsakat någon signifikant klimatpåverkan på egen hand, men kan ha haft en liten bidragande effekt till global uppvärmning tillsammans med andra vulkaner som var aktiva under samma geologiska tidsperiod.
|
Page generated in 0.0495 seconds