• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cancer staging for differentiated thyroid carcinoma

Lang, Brian., 梁熊顯. January 2006 (has links)
published_or_final_version / abstract / Surgery / Master / Master of Surgery
2

Accurate and Reliable Cancer Classi cation Based on Pathway-Markers and Subnetwork-Markers

Su, Junjie 2010 December 1900 (has links)
Finding reliable gene markers for accurate disease classification is very challenging due to a number of reasons, including the small sample size of typical clinical data, high noise in gene expression measurements, and the heterogeneity across patients. In fact, gene markers identified in independent studies often do not coincide with each other, suggesting that many of the predicted markers may have no biological significance and may be simply artifacts of the analyzed dataset. To nd more reliable and reproducible diagnostic markers, several studies proposed to analyze the gene expression data at the level of groups of functionally related genes, such as pathways. Given a set of known pathways, these methods estimate the activity level of each pathway by summarizing the expression values of its member genes and using the pathway activities for classification. One practical problem of the pathway-based approach is the limited coverage of genes by currently known pathways. As a result, potentially important genes that play critical roles in cancer development may be excluded. In this thesis, we first propose a probabilistic model to infer pathway/subnetwork activities. After that, we developed a novel method for identifying reliable subnetwork markers in a human protein-protein interaction (PPI) network based on probabilistic inference of subnetwork activities. We tested the proposed methods based on two independent breast cancer datasets. The proposed method can efficiently find reliable subnetwork markers that outperform the gene-based and pathway-based markers in terms of discriminative power, reproducibility and classification performance. The identified subnetwork markers are highly enriched in common GO terms, and they can more accurately classify breast cancer metastasis compared to markers found by a previous method.
3

Mufti-Dimensional Polarimetric Pattern Recognition & Classification Techniques for Immunohistochemical Imaging of Cancer

Deshpande, Aditi 28 May 2014 (has links)
No description available.
4

Non-Invasive Skin Cancer Classification from Surface Scanned Lesion Images

Dhinagar, Nikhil J. 12 June 2013 (has links)
No description available.
5

Genetický návrh klasifikátoru s využítím neuronových sítí / Neural Networks Classifier Design using Genetic Algorithm

Tomášek, Michal January 2016 (has links)
The aim of this work is the genetic design of neural networks, which are able to classify within various classification tasks. In order to create these neural networks, algorithm called NeuroEvolution of Augmenting Topologies (also known as NEAT) is used. Also the idea of preprocessing, which is included in implemented result, is proposed. The goal of preprocessing is to reduce the computational requirements for processing of benchmark datasets for classification accuracy. The result of this work is a set of experiments conducted over a data set for cancer cells detection and a database of handwritten digits MNIST. Classifiers generated for the cancer cells exhibits over 99 % accuracy and in experiment MNIST reduces computational requirements more than 10 % with bringing negligible error of size 0.17 %.

Page generated in 0.1048 seconds