• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 29
  • 22
  • 12
  • 6
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 226
  • 27
  • 21
  • 20
  • 19
  • 18
  • 17
  • 16
  • 16
  • 14
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

On Simultaneous Localization and Mapping inside the Human Body (Body-SLAM)

Bao, Guanqun 28 April 2014 (has links)
Wireless capsule endoscopy (WCE) offers a patient-friendly, non-invasive and painless investigation of the entire small intestine, where other conventional wired endoscopic instruments can barely reach. As a critical component of the capsule endoscopic examination, physicians need to know the precise position of the endoscopic capsule in order to identify the position of intestinal disease after it is detected by the video source. To define the position of the endoscopic capsule, we need to have a map of inside the human body. However, since the shape of the small intestine is extremely complex and the RF signal propagates differently in the non-homogeneous body tissues, accurate mapping and localization inside small intestine is very challenging. In this dissertation, we present an in-body simultaneous localization and mapping technique (Body-SLAM) to enhance the positioning accuracy of the WCE inside the small intestine and reconstruct the trajectory the capsule has traveled. In this way, the positions of the intestinal diseases can be accurately located on the map of inside human body, therefore, facilitates the following up therapeutic operations. The proposed approach takes advantage of data fusion from two sources that come with the WCE: image sequences captured by the WCE's embedded camera and the RF signal emitted by the capsule. This approach estimates the speed and orientation of the endoscopic capsule by analyzing displacements of feature points between consecutive images. Then, it integrates this motion information with the RF measurements by employing a Kalman filter to smooth the localization results and generate the route that the WCE has traveled. The performance of the proposed motion tracking algorithm is validated using empirical data from the patients and this motion model is later imported into a virtual testbed to test the performance of the alternative Body-SLAM algorithms. Experimental results show that the proposed Body-SLAM technique is able to provide accurate tracking of the WCE with average error of less than 2.3cm.
22

An in vitro study of the properties of GICs with bioactive biomaterial modification

Mulder, Riaan January 2019 (has links)
Philosophiae Doctor - PhD / The fluoride release and chemical adherence to tooth structure remain the most desirable features of glass ionomer restorative cements (GICs). Although the physical properties for multi-surface restorations are well-defined, even with the introduction of newer GICs not all demands have been met. Yet, increased use of GICs will only be possible if clinicians change their perceptions of the low survival rate of GICs. The lower clinical success rate of GICs is partly due to the marginal integrity and wear over time, which has often been recorded in the literature as restoration failure. The current, well-established restorative options for the primary dentition are Resin Modified Glass Ionomers (RMGICs) and Compomer resins. There is a paradigm shift towards materials that are more biologically favourable. Areas of research for dental materials include antibacterial properties in conjunction with ion release to maintain healthy restored teeth. If a GIC can provide adequate physical properties with the inclusion of the aforementioned features, GICs might become a more viable permanent restorative solution.
23

Introduction of a thermo-sensitive non-polar species into polyelectrolyte multilayer capsules for drug delivery

Prevot, Michelle Elizabeth January 2006 (has links)
The layer-by-layer assembly (LBL) of polyelectrolytes has been extensively studied for the preparation of ultrathin films due to the versatility of the build-up process. The control of the permeability of these layers is particularly important as there are potential drug delivery applications. Multilayered polyelectrolyte microcapsules are also of great interest due to their possible use as microcontainers. This work will present two methods that can be used as employable drug delivery systems, both of which can encapsulate an active molecule and tune the release properties of the active species. <br><br> Poly-(N-isopropyl acrylamide), (PNIPAM) is known to be a thermo-sensitive polymer that has a Lower Critical Solution Temperature (LCST) around 32oC; above this temperature PNIPAM is insoluble in water and collapses. It is also known that with the addition of salt, the LCST decreases. This work shows Differential Scanning Calorimetry (DSC) and Confocal Laser Scanning Microscopy (CLSM) evidence that the LCST of the PNIPAM can be tuned with salt type and concentration. Microcapsules were used to encapsulate this thermo-sensitive polymer, resulting in a reversible and tunable stimuli- responsive system. The encapsulation of the PNIPAM inside of the capsule was proven with Raman spectroscopy, DSC (bulk LCST measurements), AFM (thickness change), SEM (morphology change) and CLSM (in situ LCST measurement inside of the capsules). The exploitation of the capsules as a microcontainer is advantageous not only because of the protection the capsules give to the active molecules, but also because it facilitates easier transport. <br><br> The second system investigated demonstrates the ability to reduce the permeability of polyelectrolyte multilayer films by the addition of charged wax particles. The incorporation of this hydrophobic coating leads to a reduced water sensitivity particularly after heating, which melts the wax, forming a barrier layer. This conclusion was proven with Neutron Reflectivity by showing the decreased presence of D2O in planar polyelectrolyte films after annealing creating a barrier layer. The permeability of capsules could also be decreased by the addition of a wax layer. This was proved by the increase in recovery time measured by Florescence Recovery After Photobleaching, (FRAP) measurements. <br><br> In general two advanced methods, potentially suitable for drug delivery systems, have been proposed. In both cases, if biocompatible elements are used to fabricate the capsule wall, these systems provide a stable method of encapsulating active molecules. Stable encapsulation coupled with the ability to tune the wall thickness gives the ability to control the release profile of the molecule of interest. / Verkapselung ist ein vielseitiges Werkzeug, das zum Schutz und zum Transport von Molekülen ebenso eingesetzt werden kann, wie zur Verbindung von Reaktionspartnern in einem gemeinsamen, von der Umgebung abgeschirmten Raum. Es basiert auf einem einfachen Vorbild der Natur. Pflanzen schützen ihren Samen zum Beispiel durch eine harte, nahezu undurchdringbare Schale (Nüsse) oder durch eine selektiv durchlässige Hülle, wie bei Weizen, der sobald er feucht wird zu keimen beginnt. Die Natur setzt durch den Einsatz des Hülle-Kern Prinzips sehr effizient die Kontrolle über Durchlässigkeit und Anpassung an bestimmte Aufgaben um. <br><br> Wird das Hülle-Kern-Prinzip zum Schutz oder Transport von Molekülen eingesetzt, so sind die zu verwendenden Kapseln nur wenige Mikrometer groß. Sie werden dann als Mikrokapseln bezeichnet. Zur Erzeugung dieser Mikrokapseln werden verschiedene Methoden verwendet. Der heute übliche Weg geht von einer ca. 5-10 Mikrometer großen Kugel (Kern) aus, die mit einer stabilen und an die gewünschten Eigenschaften angepassten Schicht von wenigen Nanometern versehen wird. Im Anschluss wird der Kern herausgelöst und eine hohle, stabile Kapsel erhalten. <br><br> Schichten von wenigen Nanometern Dicke können aus Polyelektrolyten durch das Layer-by-Layer-Verfahren (LbL) hergestellt werden. Dieses Verfahren eignet sich auf Grund seiner vielen Anpassungsmöglichkeiten besonders zum Aufbau der Schichten für Mikrokapseln, da sich die Eigenschaften der Beschichtung bereits beim Aufbau der Schicht auf die Bedürfnisse maßschneidern lassen. Diese Arbeit befasst sich mit der Erzeugung von Mikrokapseln, deren Eigenschaften temperaturabhängig sind. Dies wurde auf zwei Wegen erreicht. Zum einen wurden Kapseln aus Polyelektrolyten und Wachs aufgebaut. Bei Temperaturerhöhung schmilzt das Wachs und versiegelt die Kapsel. Zum anderen werden Kapseln mit einem Wärme empfindlichen Polymer gefüllt. Bei Temperaturerhöhung kollabiert das Polymergerüst. Der enthaltene Wirkstoff wird freigesetzt.
24

Synbiot production and encapsulation

Wood, Kimberly Anne 16 June 2010
The use of probiotics and prebiotics has become a popular trend in the food industry. The main goal of this study was to produce a synbiot by encapsulating a probiotic and a prebiotic within a matrix that would provide sufficient protection to the probiotic against simulated gastric juice (SGJ). The ability of the probiotic, Bifidbacterium adolescentis, to grow on short chain fructooligosaccharides (FOS; DP 2-8, P95), inulin (DP 2-60, ST), and FOS/inulin mixture (DP 2-60, Syn), as well as glucose and a glucose-free maltooligosaccharide (MOS), were evaluated. Bifidobacterium adolescentis had a significantly higher specific growth rate on P95 (0.47 h-1), than glucose (0.40 h-1). Examination of the growth medium containing P95 and MOS by high performance anion exchange with pulsed amperometric detection (HPAE-PAD) revealed that B. adolescentis utilised the oligosaccharides to the same extent as the monosaccharides.<p> Bifidobacterium adolescentis was successfully encapsulated with and without P95 using extrusion and emulsion methods, at cell concentrations of 8-9 log colony forming units (CFU) mL-1. Capsules formed by the extrusion method with 1.0% alginate (AL), 4.0% pea protein isolate (PPI) + 0.5% AL, and 4.0% whey protein isolate (WPI) + 0.5% AL ranged in geometric mean diameter from 2.0 to 2.2 mm. Capsules formed by emulsion with 4.0% WPI + 0.5% AL had geometric mean diameter of 53 ìm. Extrusionbased encapsulated probiotics in either PPI + AL or WPI + AL showed improved survival in SGJ at pH 2.0 for 2.0 h with log CFU mL-1 reductions of 3.6 and 1.1, respectively. Free cells, AL extrusion-based and WPI + AL emulsion-based encapsulated probiotics showed no survival after 30 min in SGJ at pH 2.0. The addition of 1.0% (w/w) P95 to the PPI + AL capsules improved probiotic survival such that 1.0 log CFU mL-1 reduction was observed. The amount of P95 encapsulated ranged from 4.0 to 4.4 mg per gram of capsules.<p> The external surface of the PPI + AL capsules as examined by cold stage scanning electron microscopy (cryo-SEM) and atomic force microscopy (AFM) was smooth with the presence of pores ranging in diameter from 0.25 to 1.00 ìm. The addition of P95 to the capsules had no significant effect on surface roughness as measured by AFM, but significantly increased the external capsule thickness. The internal structure of the PPI + AL capsules examined by cryo-SEM revealed a porous honeycomb-like structure, with inner pore diameters ranging between 13.0 and 21.9 ìm. Probiotic cells were found to be randomly dispersed on the surface and in the interior of the honeycomb pores. In contrast, the prebiotic was found to be distributed throughout the capsule as observed by confocal laser scanning microscopy (CLSM), indicating that it would be readily available to the probiotic as a carbon source
25

Insights Into the Virulence Determinants of the Emerging Pathogen Kingella kingae

Porsch, Eric Allen January 2012 (has links)
<p><italic>Kingella kingae</italic> is an emerging bacterial pathogen that is being recognized increasingly as an important etiology of septic arthritis, osteomyelitis, and bacteremia, especially in young children. The pathogenesis of <italic>K. kingae</italic> disease begins with bacterial adherence to respiratory epithelium in the posterior pharynx. Previous work identified type IV pili as a critical factor for adherence to human epithelial cells. However, the finding that a significant percentage of pharyngeal isolates are non-piliated suggests that <italic>K. kingae</italic> expresses additional surface factors that modulate interactions with host cells and likely play key roles in the pathogenesis of <italic>K. kingae</italic> disease. The purpose of this work was to increase our understanding of <italic>K. kingae</italic> virulence determinants, specifically focused on defining the surface factors and the mechanism involved in <italic>K. kingae</italic> adhesive interactions with epithelial cells. Additionally, this work aimed to further characterize components of the <italic>K. kingae</italic> type IV pilus system, namely the PilC proteins and PilA2. </p><p>We first set out to identify non-pilus factors that influence <italic>K. kingae</italic> interactions with human epithelial cells. Using targeted genetic approaches, we found that insertional inactivation of the gene encoding a predicted trimeric autotransporter protein called Knh (Kingella NhhA homolog) resulted in reduced adherence to human epithelial cells. In addition, using a variety of techniques, including morphological analysis, cationic ferritin staining, and thin section transmission electron microscopy, we established that <italic>K. kingae</italic> elaborates a surface-associated polysaccharide capsule that requires a predicted ABC-type transporter export operon called <italic>ctrABCD for surface presentation. Furthermore, using quantitative human epithelial cell adherence assays, we discovered that the presence of surface capsule interferes with Knh-mediated adherence by non-piliated organisms and that maximal adherence in the presence of capsule requires the predicted type IV pilus retraction machinery, PilT/PilU. Based on the data presented here, we propose a novel adherence mechanism that allows <italic>K. kingae</italic> to adhere efficiently to human epithelial cells while remaining encapsulated and more resistant to immune clearance. </p><p>Having established that <italic>K. kingae</italic> produces a capsule, a large-scale polysaccharide purification technique was developed for capsule analysis of strain 269-492. Biochemical assays determined that the purified material contained thiobarbituric and phenol-sulfuric acid reactive glycosyl residues. In collaboration with the University of Georgia Complex Carbohydrate Research Center (CCRC), mass spectrometry identified galactose, N-acetyl-galactosamine, and Kdo as the major glycosyl components of the polysaccharide preparation. NMR spectroscopy revealed that the purified material contained two distinct polysaccharides with the structures of &rarr;5)&ndash;&beta;&ndash;Gal<italic>f</italic>&ndash;(1&rarr; and &rarr;3)&ndash;&beta;&ndash;GalNAc<italic>p</italic>&ndash;(1&rarr;5)&ndash;&beta;&ndash;Kdo<italic>p</italic>&ndash;(2&rarr;. Further characterization of the polysaccharides expressed by <italic>K. kingae</italic> may have implications for disease prevention strategies. </p><p>Previous work in our lab found that two PilC-like proteins called PilC1 and PilC2 influence type IV pili expression and pilus-mediated adherence. Production of either PilC1 or PilC2 is necessary for <italic>K. kingae</italic> piliation and bacterial adherence. We set out to further investigate the role of PilC1 and PilC2 in type IV pilus-associated phenotypes. We found that PilC1 contains a functional nine amino acid calcium-binding (Ca-binding) site with homology to the <italic>Pseudomonas aeruginosa</italic> PilY1 Ca-binding site and that PilC2 contains a functional 12 amino acid Ca-binding site with homology to the human calmodulin Ca-binding site. Using targeted mutagenesis to disrupt the Ca-binding sites, we demonstrated that the PilC1 and PilC2 Ca-binding sites are dispensable for piliation. Interestingly, we show that the PilC1 site is necessary for twitching motility and adherence to Chang epithelial cells, while the PilC2 site has only a minor influence on twitching motility and no influence on adherence. These findings establish key differences in PilC1 and PilC2 function in <italic>K. kingae</italic> and provide insights into the biology of the PilC-like family of proteins.</p><p>Lastly, we set out to define the role of the PilA2 minor pilin in <italic>K. kingae</italic> strain 269-492. While previous studies indicated that PilA2 is not essential for pilus expression or adherence to epithelial cells, analysis of the pilin locus in a diverse set of clinical isolates revealed that the <italic>pilA2</italic> gene sequence is highly conserved, suggesting it serves an important function. Using targeted mutagenesis we showed that PilA2 is not essential for twitching motility and may or may not be involved in natural competence. Western blot analysis was unable to detect PilA2 in wild type pilus preparations, indicating that it is expressed at a level beneath the assay detection limit or does not localize to the pilus. Additionally, site-directed mutagenesis was used to place <italic>pilA2</italic> under control of the highly active <italic>pilA1</italic> promoter and showed that PilA2 is able to be assembled into fibers that mediate intermediate adherence to epithelial cells. </p><p>Taken together, this work expands our knowledge of the <italic>K. kingae</italic> surface factor repertoire and provides insights into the roles of type IV pilus components. The mechanism of<italic> K. kingae</italic> adherence to epithelial cells is beginning to emerge. These contributions may lead to novel strategies for the prevention of invasive <italic>K. kingae</italic> disease in young children.</p> / Dissertation
26

Prevention of posterior capsule opacification by photodynamic therapy with localized benzoporphyrin derivative monoacid ring A (BPD-MA) in a rabbit surgical model

Meadows, Howard Earl 11 1900 (has links)
Posterior capsule opacification (PCO) is a major component of secondary cataract, a complication of current cataract surgery practice. This iatrogenic condition occurs in virtually all pediatric cases and to a lesser extent in adults. PCO correlates with the development in the latter half of the 20th Century of extracapsular cataract extraction (ECCE). In these surgeries, the lens capsule is left intact. During ECCE surgery a circular capsulotomy opening is created in the anterior lens capsule, and the cataractous, proteinaceous lens is removed, often via ultrasonic lens liquefaction i.e. phacoemulsification. The posterior, equatorial and remaining anterior portions of the sac-like capsule are left intact, permitting the insertion of an artificial lens into the emptied capsule. However, cells from the monolayer of epithelium on the inner surface of the capsule often begin to proliferate and migrate onto the normally cell-free inner surface of the posterior capsule, and may obscure the central axis of vision. Subsequently, a second surgery is necessary to create a small capsulotomy in the centre of the posterior capsule, usually employing an Nd:YAG laser. However, up to 5% of patients who have capsulotomies may then develop further serious, vision-threatening complications such as macular edema and retinal detachments. This thesis reports the photodynamic therapy (PDT) conditions required to prevent lens epithelial (LE) cell de novo proliferation and migration onto posterior lens capsules in a euthanized rabbit surgical model in order to predict parameters required to prevent PCO in humans. Experiments with primary in vitro cultures of human LE cells have shown rapid delivery of the photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) and efficient killing with low light doses of 690 nm red light. Additional studies have shown the efficacy of various viscous agents in protecting the comeal endothelium. During model phacoemulsification ECCE surgeries, the use of hyaluronate viscoelastic carriers addressed the need for containment necessary for localized delivery of photosensitizer in the emptied capsule. Long-term monitoring of PDT-treated rabbit lens capsules in vitro has demonstrated a phototoxic effect including complete cell kill in this surgical model employing the prophylactic use of PDT.
27

Synbiot production and encapsulation

Wood, Kimberly Anne 16 June 2010 (has links)
The use of probiotics and prebiotics has become a popular trend in the food industry. The main goal of this study was to produce a synbiot by encapsulating a probiotic and a prebiotic within a matrix that would provide sufficient protection to the probiotic against simulated gastric juice (SGJ). The ability of the probiotic, Bifidbacterium adolescentis, to grow on short chain fructooligosaccharides (FOS; DP 2-8, P95), inulin (DP 2-60, ST), and FOS/inulin mixture (DP 2-60, Syn), as well as glucose and a glucose-free maltooligosaccharide (MOS), were evaluated. Bifidobacterium adolescentis had a significantly higher specific growth rate on P95 (0.47 h-1), than glucose (0.40 h-1). Examination of the growth medium containing P95 and MOS by high performance anion exchange with pulsed amperometric detection (HPAE-PAD) revealed that B. adolescentis utilised the oligosaccharides to the same extent as the monosaccharides.<p> Bifidobacterium adolescentis was successfully encapsulated with and without P95 using extrusion and emulsion methods, at cell concentrations of 8-9 log colony forming units (CFU) mL-1. Capsules formed by the extrusion method with 1.0% alginate (AL), 4.0% pea protein isolate (PPI) + 0.5% AL, and 4.0% whey protein isolate (WPI) + 0.5% AL ranged in geometric mean diameter from 2.0 to 2.2 mm. Capsules formed by emulsion with 4.0% WPI + 0.5% AL had geometric mean diameter of 53 ìm. Extrusionbased encapsulated probiotics in either PPI + AL or WPI + AL showed improved survival in SGJ at pH 2.0 for 2.0 h with log CFU mL-1 reductions of 3.6 and 1.1, respectively. Free cells, AL extrusion-based and WPI + AL emulsion-based encapsulated probiotics showed no survival after 30 min in SGJ at pH 2.0. The addition of 1.0% (w/w) P95 to the PPI + AL capsules improved probiotic survival such that 1.0 log CFU mL-1 reduction was observed. The amount of P95 encapsulated ranged from 4.0 to 4.4 mg per gram of capsules.<p> The external surface of the PPI + AL capsules as examined by cold stage scanning electron microscopy (cryo-SEM) and atomic force microscopy (AFM) was smooth with the presence of pores ranging in diameter from 0.25 to 1.00 ìm. The addition of P95 to the capsules had no significant effect on surface roughness as measured by AFM, but significantly increased the external capsule thickness. The internal structure of the PPI + AL capsules examined by cryo-SEM revealed a porous honeycomb-like structure, with inner pore diameters ranging between 13.0 and 21.9 ìm. Probiotic cells were found to be randomly dispersed on the surface and in the interior of the honeycomb pores. In contrast, the prebiotic was found to be distributed throughout the capsule as observed by confocal laser scanning microscopy (CLSM), indicating that it would be readily available to the probiotic as a carbon source
28

Research of the Application Strategies of Wireless Capsule Endoscopy System---- Demonstrating With Show- Chwan Memorial Hospital

Fang, Yi-Jen 09 September 2005 (has links)
none
29

Prevention of posterior capsule opacification by photodynamic therapy with localized benzoporphyrin derivative monoacid ring A (BPD-MA) in a rabbit surgical model

Meadows, Howard Earl 11 1900 (has links)
Posterior capsule opacification (PCO) is a major component of secondary cataract, a complication of current cataract surgery practice. This iatrogenic condition occurs in virtually all pediatric cases and to a lesser extent in adults. PCO correlates with the development in the latter half of the 20th Century of extracapsular cataract extraction (ECCE). In these surgeries, the lens capsule is left intact. During ECCE surgery a circular capsulotomy opening is created in the anterior lens capsule, and the cataractous, proteinaceous lens is removed, often via ultrasonic lens liquefaction i.e. phacoemulsification. The posterior, equatorial and remaining anterior portions of the sac-like capsule are left intact, permitting the insertion of an artificial lens into the emptied capsule. However, cells from the monolayer of epithelium on the inner surface of the capsule often begin to proliferate and migrate onto the normally cell-free inner surface of the posterior capsule, and may obscure the central axis of vision. Subsequently, a second surgery is necessary to create a small capsulotomy in the centre of the posterior capsule, usually employing an Nd:YAG laser. However, up to 5% of patients who have capsulotomies may then develop further serious, vision-threatening complications such as macular edema and retinal detachments. This thesis reports the photodynamic therapy (PDT) conditions required to prevent lens epithelial (LE) cell de novo proliferation and migration onto posterior lens capsules in a euthanized rabbit surgical model in order to predict parameters required to prevent PCO in humans. Experiments with primary in vitro cultures of human LE cells have shown rapid delivery of the photosensitizer benzoporphyrin derivative monoacid ring A (BPD-MA) and efficient killing with low light doses of 690 nm red light. Additional studies have shown the efficacy of various viscous agents in protecting the comeal endothelium. During model phacoemulsification ECCE surgeries, the use of hyaluronate viscoelastic carriers addressed the need for containment necessary for localized delivery of photosensitizer in the emptied capsule. Long-term monitoring of PDT-treated rabbit lens capsules in vitro has demonstrated a phototoxic effect including complete cell kill in this surgical model employing the prophylactic use of PDT.
30

A study of the morphology of the nasal capsular region thesis submitted as partial fulfillment ... in orthodontics ... /

French, William C. January 1956 (has links)
Thesis (M.S.)--University of Michigan, 1956.

Page generated in 0.0456 seconds