• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 85
  • 19
  • 12
  • 11
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 238
  • 79
  • 53
  • 51
  • 46
  • 43
  • 40
  • 40
  • 36
  • 36
  • 31
  • 24
  • 23
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Preparation of Endohedral Metallofullerenes by using Metal Carbides and Metal Carbonyls

Yang, Chun-Wen 14 August 2010 (has links)
none
32

Semiconductor oxide supported Mo and Mo-W carbide catalysts for Fischer-Tropsch synthesis

Nguyen, Tuan Huy, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Fischer-Tropsch synthesis reaction to produce sulphur free hydrocarbons has enjoyed a resurgent in interests due to increases in world oil prices. In this work, the suitability of Mo and Mo-W carbides has been investigated as a possible cost-effective alternative to noble metals in Fischer-Tropsch synthesis. The molybdenum and tungsten monometallic and bimetallic carbides were prepared through precipitation from homogeneous solution to the sulphide followed by carburization with a mixture of propane and hydrogen to produce the resulting metal carbide. A 23 factorial design strategy was employed to investigate the effect of three carburizing variables, namely, time, temperature and gas ratio on the resulting catalyst. In particular, the effect of supports was also examined through four common semiconductor oxide supports, namely: Al2O3, SiO2, TiO2 and ZrO2. Thermogravimetric analysis of the carburization reactions showed that the conversion from metal sulphide to the metal carbides is a multistep process producing different phases of carbides, namely ??-MoC1-x, ??-Mo2C, ?? -WC1-x and ??-W2C, depending on heating rate and temperature. The rate determining step of the carburising reaction is the diffusion of carbon atoms into the metal matrix, hence giving relatively low activation energy values. Statistical analysis of the factorial design revealed that all three carburizing variables affect the final physiochemical makeup of the catalyst. SEM analysis showed that the carbides are well dispersed on the surface of the support and catalyst particles produced are nanoparticles in the range of 25 to 220 nm depending on the support. Fischer-Tropsch activity test showed that monometallic molybdenum carbide is active under Fischer-Tropsch conditions while tungsten carbide is inactive for the conditions studied in this project. However, bimetallic carbide catalyst, consisting of the two mentioned metals gave overall higher reaction rates and decreased methane selectivity. Steady state analysis revealed that there are two active sites on the surface of molybdenum carbide catalyst resulting in two chain growth propagation values when analysed via the Anderson-Schulz-Flory kinetics. Overall, ZrO2 support appeared to be the most suitable support followed by SiO2, TiO2 and Al2O3. Finally, kinetic modelling of data showed that methanation and higher hydrocarbons formation path occurs via combination of the oxygenated intermediate and Eley-Rideal mechanism.
33

Semiconductor oxide supported Mo and Mo-W carbide catalysts for Fischer-Tropsch synthesis

Nguyen, Tuan Huy, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Fischer-Tropsch synthesis reaction to produce sulphur free hydrocarbons has enjoyed a resurgent in interests due to increases in world oil prices. In this work, the suitability of Mo and Mo-W carbides has been investigated as a possible cost-effective alternative to noble metals in Fischer-Tropsch synthesis. The molybdenum and tungsten monometallic and bimetallic carbides were prepared through precipitation from homogeneous solution to the sulphide followed by carburization with a mixture of propane and hydrogen to produce the resulting metal carbide. A 23 factorial design strategy was employed to investigate the effect of three carburizing variables, namely, time, temperature and gas ratio on the resulting catalyst. In particular, the effect of supports was also examined through four common semiconductor oxide supports, namely: Al2O3, SiO2, TiO2 and ZrO2. Thermogravimetric analysis of the carburization reactions showed that the conversion from metal sulphide to the metal carbides is a multistep process producing different phases of carbides, namely ??-MoC1-x, ??-Mo2C, ?? -WC1-x and ??-W2C, depending on heating rate and temperature. The rate determining step of the carburising reaction is the diffusion of carbon atoms into the metal matrix, hence giving relatively low activation energy values. Statistical analysis of the factorial design revealed that all three carburizing variables affect the final physiochemical makeup of the catalyst. SEM analysis showed that the carbides are well dispersed on the surface of the support and catalyst particles produced are nanoparticles in the range of 25 to 220 nm depending on the support. Fischer-Tropsch activity test showed that monometallic molybdenum carbide is active under Fischer-Tropsch conditions while tungsten carbide is inactive for the conditions studied in this project. However, bimetallic carbide catalyst, consisting of the two mentioned metals gave overall higher reaction rates and decreased methane selectivity. Steady state analysis revealed that there are two active sites on the surface of molybdenum carbide catalyst resulting in two chain growth propagation values when analysed via the Anderson-Schulz-Flory kinetics. Overall, ZrO2 support appeared to be the most suitable support followed by SiO2, TiO2 and Al2O3. Finally, kinetic modelling of data showed that methanation and higher hydrocarbons formation path occurs via combination of the oxygenated intermediate and Eley-Rideal mechanism.
34

Semiconductor oxide supported Mo and Mo-W carbide catalysts for Fischer-Tropsch synthesis

Nguyen, Tuan Huy, Chemical Sciences & Engineering, Faculty of Engineering, UNSW January 2006 (has links)
Fischer-Tropsch synthesis reaction to produce sulphur free hydrocarbons has enjoyed a resurgent in interests due to increases in world oil prices. In this work, the suitability of Mo and Mo-W carbides has been investigated as a possible cost-effective alternative to noble metals in Fischer-Tropsch synthesis. The molybdenum and tungsten monometallic and bimetallic carbides were prepared through precipitation from homogeneous solution to the sulphide followed by carburization with a mixture of propane and hydrogen to produce the resulting metal carbide. A 23 factorial design strategy was employed to investigate the effect of three carburizing variables, namely, time, temperature and gas ratio on the resulting catalyst. In particular, the effect of supports was also examined through four common semiconductor oxide supports, namely: Al2O3, SiO2, TiO2 and ZrO2. Thermogravimetric analysis of the carburization reactions showed that the conversion from metal sulphide to the metal carbides is a multistep process producing different phases of carbides, namely ??-MoC1-x, ??-Mo2C, ?? -WC1-x and ??-W2C, depending on heating rate and temperature. The rate determining step of the carburising reaction is the diffusion of carbon atoms into the metal matrix, hence giving relatively low activation energy values. Statistical analysis of the factorial design revealed that all three carburizing variables affect the final physiochemical makeup of the catalyst. SEM analysis showed that the carbides are well dispersed on the surface of the support and catalyst particles produced are nanoparticles in the range of 25 to 220 nm depending on the support. Fischer-Tropsch activity test showed that monometallic molybdenum carbide is active under Fischer-Tropsch conditions while tungsten carbide is inactive for the conditions studied in this project. However, bimetallic carbide catalyst, consisting of the two mentioned metals gave overall higher reaction rates and decreased methane selectivity. Steady state analysis revealed that there are two active sites on the surface of molybdenum carbide catalyst resulting in two chain growth propagation values when analysed via the Anderson-Schulz-Flory kinetics. Overall, ZrO2 support appeared to be the most suitable support followed by SiO2, TiO2 and Al2O3. Finally, kinetic modelling of data showed that methanation and higher hydrocarbons formation path occurs via combination of the oxygenated intermediate and Eley-Rideal mechanism.
35

HfC structural foams synthesized from polymer precursors

Fan, Haibo, January 2005 (has links) (PDF)
Thesis (Ph.D.)--Auburn University, 2005. / Abstract. Vita. Includes bibliographic references (ℓ. 134-138)
36

Chemical vapor deposition of tungsten carbide films on silicon and carbon substrates

Beadle, Kendra A. January 2007 (has links)
Thesis (M.C.E.)--University of Delaware, 2007. / Principal faculty advisors: Jingguang G. Chen and Brian G. Willis, Dept. of Chemical Engineering. Includes bibliographical references.
37

The elastic and dielectric properties of structural ceramics

Liu, Huijin January 1999 (has links)
No description available.
38

Grain refinement in aluminium containing magnesium alloys

Joshi, Utsavi Mukeshbhai January 2016 (has links)
The novel grain refiners developed in this research could be broadly classified into borides and carbides. The motive behind choosing MgB2, AlB2 and their master alloys Mg-MgB2 and Mg-AlB2 as the grain refiners was driven by the crystallographic matching of the hexagonal borides with the magnesium crystal structure. Apart from this lightweight borides, denser borides such as CrB and WB have also shown excellent grain refinement in AZ91, AM50 and AZ31 alloys. It is suggested that the grain refinement effect in the magnesium alloys could be improved through a combined addition of bismuth along with the boride. The carbon based grain refiners were also explored as they are well-established for the grain refinement of aluminium containing magnesium alloys. The new carbon based grain refiners identified through this research are B4C, Mg-B4C, Mg-3Ti-1C. Magnesium matrix was chosen for the development of each of these master alloys to eliminate any impurity contamination during the grain refiner addition to the magnesium melt. The pressureless melt infiltration techniques was involved in the development of Mg-MgB2, Mg-AlB2 and Mg-B4C while, the ‘halide salt route’ was adopted for producing Mg-3Ti-1C master alloys. The application of ultrasonic cavitation for the development of a new Al-1.5B-2C master alloy was shown to be effective for a homogenous distribution of the intermetallic phases in the form of Al3BC. The potential heterogeneous nucleating sites proposed in the commercial aluminium containing magnesium alloys are MgB2 for Mg-MgB2 master alloy; Mg1-xAlxB2 (0.10 < x < 0.18) for AlB2 grain refiner; MgB2C2 for B4C grain refiner; CrB and WB for their individual powder additions respectively; Ti2AlC for Mg-3Ti-1C master alloy; Al3BC and Al4C3 for the Al-1.5B-2C master alloy.
39

Das verdichtungsverhalten von beta-SiC beim Heisspressen mit verschiedenen Sinterhilfen / Efeito de diferentes aditivos de sinterização na densificação por prensagem a quente de beta-carbeto de silicio

BRESSIANI, ANA H. de A. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:53:45Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T13:58:43Z (GMT). No. of bitstreams: 1 12360.pdf: 4474610 bytes, checksum: afe6b212ae16024e756b11010a52131a (MD5) / Tese (Doutoramento) / IPEN/T / Institut fur Metallkunde der Universitat Stuttgart, Alemanha
40

Estudo de sinterizacao e analise microestrutural de alumina-carbeto de boro Alsub2Osub3-Bsub4C

OLIVEIRA, ELIZABETH E. de M. 09 October 2014 (has links)
Made available in DSpace on 2014-10-09T12:40:45Z (GMT). No. of bitstreams: 0 / Made available in DSpace on 2014-10-09T14:00:22Z (GMT). No. of bitstreams: 1 02756.pdf: 6061739 bytes, checksum: 638186919450401c574295b83b6bf8d1 (MD5) / Dissertacao (Mestrado) / IPEN/D / Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP

Page generated in 0.0566 seconds