• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Further Structural Studies on Jacalin and Genomics Search for Mycobacterial and Archeal Lectins

Abhinav, K V January 2016 (has links) (PDF)
This thesis consists of two parts. The first part is concerned with further structural and related studies of jacalin, one of the two lectins found in jack fruit seeds. The second part deals with the search of mycobacterial and archeal genomes for lectins. The β-prism I fold was identified as a lectin fold through the X-ray analysis of jacalin way back in 1996. Subsequent structural studies on jacalin are described in the first chapter in context of the overall efforts on lectins with particular reference to those on lectins with β-prism I fold. The structure of jacalin has been thoroughly characterized through the analysis of several crystals. The extended binding site of the lectin, made up of the primary binding site and secondary sites A and B, has also been characterized through studies on different jacalin-sugar complexes. However, nuances of jacalin-carbohydrate interactions remain underexplored with respect to two specific issues. The first issue is concerned with the structural basis for the lower affinity of jacalin for β-substituted sugars. The second has to do with the influence of the anomeric nature of the glycosidic linkage on the location of the reducing and non-reducing sugars in disaccharides when interacting with jacalin. Part of the work described in the thesis addresses these two issues. It was surmised that the lower affinity of β-galactosides to jacalin as compared to α-galactosides, is caused by steric interactions of the substituents in the former with the protein. This issue is explored both energetically and structurally in Chapter 2 using appropriately derivatized monosaccharide complexes of jacalin. It turns out that the earlier surmise is not correct. The interactions of the substituent with the binding site remain essentially the same irrespective of the anomeric nature of the substitution. This is achieved through a distortion of the sugar ring in β-galactosides. The difference in energy, and therefore affinity, is caused by the distortion of the sugar ring in β-galactosides. The elucidation of this unprecedented distortion of the ligand as a strategy for modulating affinity is of general interest. The crystal structures also provide a rationale for the relative affinities of the different carbohydrate ligands to jacalin. The crystal structures of jacalin complexed with α-linked oligosaccharides Gal α-(1,4) Gal and Gal α-(1,3) Gal β-(1,4) Gal, as described in Chapter 3, have been determined with the primary objective of exploring the effect of linkage on the location of reducing and non-reducing sugars in the extended binding site of the lectin, an issue which has not been studied thoroughly. Contrary to the earlier surmise based on simple steric considerations, the two structures demonstrate that α-linked sugars can bind to jacalin with non-reducing sugar at the primary binding site. This is made possible substantially on account of the hitherto underestimated plasticity of a non-polar region of the extended binding site. Modelling studies involving conformational search and energy minimization, along with available crystallographic and thermodynamic data, indicate a strong preference for complexation with Gal β-(1,3) Gal with the reducing Gal at the primary site, followed by that with Gal α-(1,3) Gal, with the reducing or non-reducing Gal located at the primary binding site. This observation is in consonance with the facility of jacalin to bind mucin type O-glycans containing T-antigen core. Crystal structures of jacalin in complex with GlcNAc β-(1,3) Gal-β-OMe and Gal β-(1,3) Gal-β-OMe have also been described in Chapter 4. The binding of the ligands to jacalin is similar to that of analogous α-substituted disaccharides. However, the β-substituted β-(1,3) linked disaccharides get distorted at the anomeric centre and the glycosidic linkage. The distortion results in higher internal energies of the ligands leading to lower affinity to the lectin. This confirms the possibility of using ligand distortion as a strategy for modulating binding affinity. Unlike in the case of β-substituted monosaccharides bound to jacalin, where a larger distortion at the anomeric centre was observed, smaller distortions are distributed among two centres in the structures of the two β-substituted β-(1,3) linked disaccharides presented here. These disaccharides, like the unsubstituted and α-substituted counterparts, bind jacalin with the reducing Gal at the primary binding site, indicating that the lower binding affinity of β-substituted disaccharides is not enough to overcome the intrinsic propensity of Gal β-(1,3) Gal based disaccharides to bind jacalin with the reducing sugar at the primary site. Although originally isolated from plants, lectins were also found subsequently in all forms of life, including bacteria. Studies on microbial lectins have not been as extensive as on those from plants and animals, although there have been some outstanding individual investigations on bacterial toxins like ADP-ribosylating toxins and neurotoxins. In addition to bacterial toxins, adhesins, β-trefoil lectins and cyanobacterial lectins form other important subgroups which have been explored using crystallography. Features pertaining to their three dimensional folds, carbohydrate specificity and biological properties are described in Chapter 5, to set the stage for the work discussed in the second part of the thesis. Studies on mycobacterial lectins were unexplored until work was initiated in the area in this laboratory some years ago. One of the lectins, identified on the basis of a bioinformatics search of M. tuberculosis H37Rv genome was cloned, expressed and crystallized. Also cloned, expressed and crystallized is another lectin from M. smegmatis. Biophysical and modelling studies were carried out on the full length protein containing this lectin. However, systematic efforts on mycobacterial lectins were conspicuous by their absence. The first chapter (Chapter 6) in the second part of the thesis is concerned with a genomic search for lectins in mycobacterial genomes. It was also realized that hardly anything is known about archeal lectins. Therefore, as discussed in the final chapter, a genomic search for archeal lectins was undertaken. Sixty-four sequences containing lectin domains with homologs of known three-dimensional structure were identified through a search of mycobacterial genomes and are described in detail in Chapter 6. They appear to belong to the β-prism II, the C-type, the Microcystis virdis (MV), and the β-trefoil lectin folds. The first three always occur in conjunction with the LysM, the PI-PLC, and the β-grasp domains, respectively while mycobacterial β-trefoil lectins are unaccompanied by any other domain. Thirty heparin binding hemagglutinins (HBHA), already annotated, have also been included in the study although they have no homologs of known three-dimensional structure. The biological role of HBHA has been well characterized. A comparison between the sequences of the lectin from pathogenic and non-pathogenic mycobacteria provides insights into the carbohydrate binding region of the molecule, but the structure of the molecule is yet to be determined. A reasonable picture of the structural features of other mycobacterial proteins containing one of the four lectin domains can be gleaned through the examination of homologous proteins, although the structure of none of them is available. Their biological role is yet to be elucidated. The work presented here is among the first steps towards exploring the almost unexplored area of the structural biology of mycobacterial lectins. As mentioned in Chapter 7, forty six lectin domains, which have homologues among well established eukaryotic and bacterial lectins of known three dimensional structure, have been identified through a search of 165 archeal genomes using a multi-pronged approach involving domain recognition, sequence search and analysis of binding sites. Twenty one of them have the 7-bladed β-propeller lectin fold while 16 have the β-trefoil fold and 7 the legume lectin fold. The remainder assumes the C-type lectin, the β-prism I and the tachylectin folds. Acceptable models for almost all of them could be generated using the appropriate lectins of known three dimensional structure as templates, with binding sites at one or more expected locations. The work represents the first comprehensive bioinformatics study of archeal lectins. The presence of lectins with the same fold in all domains of life indicates their ancient origin well before the divergence of the three branches. Further work is necessary to identify archeal lectins which have no homologues among eukaryotic and bacterial species.
2

Approche multivalente des interactions saccharides - lectines : synthèse de glycoclusters et analyse de la reconnaissance biomoléculaire / Multivalency in carbohydrate-lectins interactions : glycoclusters synthesis and analysis of biomolecular recognition events.

Cecioni, Samy 13 December 2010 (has links)
L'interaction non-covalente entre un ligand et un récepteur selon un modèle clé-serrure constitue une des bases essentielles de tout système biologique. La présence de multiples clés et serrures sur les biomolécules conduit à des interactions multivalentes. Les lectines sont très fréquemment structurées en homo-multimères et sont donc des cibles de choix pour l'étude des interactions avec des structures multivalentes glycosylées. Ligands et récepteurs multivalents peuvent obéir à plusieurs mécanismes d'association conduisant à des profils thermodynamiques et cinétiques permettant de rationnaliser les améliorations spectaculaires d'affinité souvent observées. L'utilisation de ligands de faible valence et de petite taille permet une présentation contrôlée des sucres au travers d'une structure unique bien définie. Ces glycoclusters sont des plateformes adaptées à l'étude de l'influence de la topologie de la présentation des sucres sur l'interaction. La synthèse de glycoclusters a été optimisée selon une voie convergente de glycosylation puis de couplage par CuAAC permettant la synthèse de structures multi-glycosylées telles que des calix[4]arènes de différentes conformations, des peptoïdes linéaires et cycliques ou encore des porphyrines. Ces ligands ont été évalués par quatre techniques d'analyse des interactions (HIA, ELLA, SPR, ITC) principalement en présence de la lectine PA-IL de Pseudomonas aeruginosa mais également avec la Galectine-1 humaine et la lectine d'Erythrina cristagalli (légumineuse). Des glycoclusters de seconde génération ont été ensuite été préparés avec l'objectif d'optimiser les composantes enthalpiques et entropiques de l'interaction. Les résultats indiquent que de légères modifications de la présentation des sucres peuvent induire des mécanismes d'association différents. La conception de structures rigidifiées a révélé des profils thermodynamiques contre-intuitifs qui ont pu être modélisés. Par cette étude, plusieurs ligands ont montré des affinités sans précédent pour la lectine PA-IL. Le meilleur ligand multivalent de première génération a confirmé un potentiel thérapeutique prometteur in vivo. / Following Fischer's “lock-key“ concept, non-covalent interactions between a ligand and its receptor is one of the most fundamental process of any biological system. The presence of multiple keys and locks at the surface of many biomolecules leads to multivalent interactions. Lectins are appropriate partners for the study of multivalent interactions with multivalent glycoconjugates since lectins are generally organized as homomultimers. Association of ligands and receptors can occur through several mechanisms leading to distinct thermodynamic and kinetic patterns. Thermodynamic and kinetic parameters often rationalize the impressive affinity improvement observed in the context of multivalent interactions. Small and low valency multivalent ligands provide a neat organization of carbohydrates through a single well-defined structure. These glycoclusters are appropriate probes for studying the influence of the overall topology on the interaction. Glycocluster synthesis was optimized according to a convergent strategy consisting of a glycosidation reaction followed by multiple CuAAC couplings. This strategy yielded a library of glycoclusters based on conformers of calix[4]arenes, linear and cyclic peptoids and porphyrins scaffolds. Glycoclusters were evaluated thanks to a combination of four biochemical techniques (HIA, ELLA, SPR, ITC) mainly versus PA-IL, a tetrameric lectin from Pseudomonas aeruginosa. Further investigations of these ligands were performed with a plant lectin from Erythrina cristagalli and with human galectin-1. Second generation glycoclusters were prepared in order to optimize enthalpic and entropic contributions to the interaction. Results indicate that a slight modification of the glycocluster topology could induce different mechanisms. The design of glycoclusters with stiffened linkers highlights unexpected entropic patterns. Molecular modeling of these linkers provided rationalization of these entropic patterns on the basis of Boltzmann distribution. This work present glycoclusters with an unprecedented affinity for PA-IL. The best first generation glycocluster confirmed promising therapeutic potentialities in vivo.
3

Nouveaux glycoclusters polysulfurés à coeur triazine : synthèse et interaction envers PA-IL / Novel polysulfurated glycoclusters with triazine scaffold : synthese and interactions toward pa-il

Smadhi, Meriem 15 July 2013 (has links)
Les interactions protéines-carbohydrates sont à la base de nombreux processus biologiques physiologiques aussi bien que pathologiques. Ces interactions incluent la synthèse et la dégradation enzymatique des oligosaccharides, la cohésion des tissus, l'immunité, le cancer ou encore l'infection bactérienne et virale. L'inhibition de ce type d'interaction par des molécules multivalentes synthétiques telles les glycopolymères, glycodendrimères, glycoclusters, etc. fait l'objet d'études importantes depuis plusieurs décennies. L'obtention de telles molécules pourrait permettre de développer de nouvelles thérapies qui pourraient palier notamment la multi-résistance aux antibiotiques. De plus, la détection de telles interactions par des méthodes simples et faciles à mettre en oeuvre permettrait une amélioration de la compréhension de ces phénomènes, ainsi que le diagnostic rapide de la présence de microorganismes. C'est dans ce contexte, que nous avons développé une nouvelle classe de composés glycosylés multivalents à coeur triazine. Ces glycoclusters de basse valence, ont la particularité de présenter une double fonctionnalité : l'inhibition d'interactions lectine-sucre par des effets de multivalence ainsi que la détection de ces interactions. Nous présentons dans ce manuscrit, la synthèse d'une nouvelle famille de glycoclusters polysulfurés à coeur triazine portant des épitopes saccharidiques tels que D-glucose, D-galactose, D-mannose, L-fucose, ainsi que leurs évaluations biologiques réalisées sur des lectines de Pseudomonas aeuriginosa. Nous avons ainsi mis en évidence la possibilité de reconnaître et de détecter les interactions lectine-sucre dans un premier temps par association d'un cluster mixte portant un fluorophore, et de façon plus sophistiquée, grâce à un système à géométrie variable incorporant dans le scaffold même un switch photochimique variant l'arrangement des sucres dans l'espace / Protein-carbohydrate interactions mediate a wide range of biochemical processes. Amongst these is the process of bacterial infection, which often proceeds through carbohydrate-binding lectins involved in biofilm formation. Even if the individual associations result from weak interactions, the assembly of multiple carbohydrate-protein interactions, typically more than additive, confers to the system the required specificity and avidity for their biological functions. In order to study this « glycocluster effects », a number of scaffold systems presenting multivalent carbohydrate ligands have been prepared in the literature. Dendrimers, polymers, peptides, calixarenes, to name a few, have been used as core molecules for the synthesis of multivalent glycoconjugates. The purpose of this work is to design new glycoclusters which exhibit dual functionality: the inhibition of carbohydrate-protein interactions via a multivalency effect; and detection of the interactions via fluorescence spectroscopy. A first generation of polysulfurated glycoclusters, organized around a heteroaromatic core, was synthesized using click chemistry reactions, which provided a family of highly soluble and readily accessible clusters. The glycoclusters were evaluated for their ligand-lectin interactions, multivalency effects, thermodynamic parameters, and abilty to modulate biofilm formation by Pseudomonas aeruginosa, a major causative agent of lung infections in cystic fibrosis patients. We describe a new family of ‘switchable glycoclusters’ based on photochromic behavior. They are designed to generate a modulated fluorescence signal as well as a defined change in the three-dimensional arrangement of the sugar epitopes, and may eventually provide significantly improved probes for studying the distribution, dynamics, interactions, and activities of specific lectins

Page generated in 0.4977 seconds