1 |
Mineral and Redox Controls on Soil Carbon Cycling in Seasonally Flooded SoilsLaCroix, Rachelle 25 October 2018 (has links)
Soils contain nearly three times the amount of carbon (C) than the atmosphere, with C turnover times ranging from centuries to millennia. Although wetland soils represent a relatively small portion of the terrestrial landscape, they account for an estimated 20-30% of the global C reservoir. Seasonally flooded soils are likely the most vulnerable wetlands to climate change, as changing temperature and precipitation patterns are expected to alter the timing and duration of flooding. Seasonal variations in soil moisture are recognized as a critical control on soil C stocks and CO2emissions. However, the relative influence of associated changes in soil oxygen availability, root dynamics and the stability of mineral-organic associations are largely unknown. The overarching goal of this study was to examine the relative influence of redox state, root density and mineralogy on C cycling within seasonally flooded soil. To accomplish this goal, we combined seasonal monitoring of soil moisture, redox potential, and carbon dioxide emissions with a characterization of organic matter composition, mineralogy and root biomass along upland to lowland transects. We found that water saturation was the limiting factor for CO2emissions from seasonal flooded lowland soils, whereas soil temperature primarily regulated emissions from upland soils. Seasonal water saturation also resulted in topsoil C accumulation in lowlands compared to uplands, despite experiencing prolonged aerobic periods. Moreover, the C that accumulated in lowland topsoils was more chemically reduced compared to upland soils. However, the C chemistry in the subsoil showed the opposite trend of being more reduced in uplands compared to lowland subsoils. In sum, our results suggest that anaerobically protected soil C in seasonal flooded soils is particularly vulnerable to changing moisture regimes in response to climate change. To what extent this expected C loss is compensated by upland plant encroachment, or the neoformation of mineral-organic associations, warrants future research.
|
2 |
Fluvial carbon dynamics in degraded peatland catchmentsStimson, Andrew Graham January 2016 (has links)
Inland waters including streams, rivers, reservoirs and lakes are regarded as a significant site of Organic Carbon (OC) cycling, and greenhouse gas production. As a result, there has been significant recent interest in the rates and fate of fluvial carbon exported from organic soils, such as peatlands. Additionally, peatlands can be subject to substantial degradation resulting in high rates of fluvial OC export, and this has led to efforts to repair degraded peatlands through restoration programmes. As a consequence, the study of degraded areas is useful to quantify the upper values of carbon release, understand processes of transformation, and evaluate the success of restoration programmes. Importantly peatlands are also collection areas for drinking water, which has implications for treatment, and requires better understanding of carbon cycling upstream of treatment works, in headwater rivers, reservoirs and pipes. UK upland blanket peat catchments are a key location in which to consider global questions surrounding fluvial carbon export and transformations, as they are highly degraded, provide a source of drinking water supply, and are currently undergoing pioneering methods of landscape scale restoration. This thesis considers Kinder Scout, an area of highly degraded and gullied blanket peatland in the South Pennines, UK. Using analysis of water samples collected over several years in the Kinder reservoir catchment and plateau, this thesis presents three novel contributions to global questions concerning OC cycling and peatlands. Firstly it provides (to date), the only carbon budget for a reservoir in a peat dominated catchment with high Particulate Organic Carbon (POC) export, which demonstrates that reservoirs may be net sources of Dissolved Organic Carbon (DOC), with the implication that POC-DOC interactions are important OC transformation mechanism in degraded systems. Secondly through use of a unique integrated combination of methods, it considers changes in carbon flux and composition in both river, lake and pipe locations, providing detailed understanding of the relative roles of river reaches, reservoirs and supply pipes, in controlling fluvial carbon cycling in peatland systems, and upstream of water treatment works. An important implication here, is that rate and direction of change in water treatability varies through a catchment. Finally, it includes results from the first widespread monitoring of the catchment scale effects of a new method of peatland revegetation. This restoration approach is being applied at landscape scale and the findings here, are that despite fears to the contrary, it does not lead to short term increases in fluvial carbon loss, which is an important piece of evidence supporting practical conservation approaches in these systems. To further enhance this research, a combination of field and laboratory investigations into carbon transformation processes, and ongoing restoration mentoring should be undertaken.
|
3 |
Bacterioplankton in the Baltic Sea : influence of allochthonous organic matter and salinityFigueroa, Daniela January 2016 (has links)
Climate change is expected to increase the precipitation ~30% in higher latitudes during the next century, increasing the land runoff via rivers to aquatic ecosystems. The Baltic Sea will receive higher river discharges, accompanied by larger input of allochthonous dissolved organic matter (DOM) from terrestrial ecosystems. The salinity will decrease due to freshwater dilution. The allochthonous DOM constitute a potential growth substrate for microscopic bacterioplankton and phytoplankton, which together make up the basal trophic level in the sea. The aim of my thesis is to elucidate the bacterial processing of allochthonous DOM and to evaluate possible consequences of increased runoff on the basal level of the food web in the Baltic Sea. I performed field studies, microcosm experiments and a theoretical modeling study. Results from the field studies showed that allochthonous DOM input via river load promotes the heterotrophic bacterial production and influences the bacterial community composition in the northern Baltic Sea. In a northerly estuary ~60% of bacterial production was estimated to be sustained by terrestrial sources, and allochthonous DOM was a strong structuring factor for the bacterial community composition. Network analysis showed that during spring the diversity and the interactions between the bacteria were relatively low, while later during summer other environmental factors regulate the community, allowing a higher diversity and more interactions between different bacterial groups. The influence of the river inflow on the bacterial community allowed “generalists” bacteria to be more abundant than “specialists” bacteria. Results from a transplantation experiment, where bacteria were transplanted from the northern Baltic Sea to the seawater from the southern Baltic Sea and vice versa, showed that salinity, as well as the DOM composition affect the bacterial community composition and their enzymatic activity. The results showed that α-proteobacteria in general were favoured by high salinity, β-proteobacteria by low salinity and terrestrial DOM compounds and γ-proteobacteria by the enclosure itself. However, effects on the community composition and enzymatic activity were not consistent when the bacterial community was retransplanted, indicating a functional redundancy of the bacterial communities. Results of ecosystem modeling showed that climate change is likely to have quite different effect on the north and the south of the Baltic Sea. In the south, higher temperature and internal nutrient load will increase the cyanobacterial blooms and expand the anoxic or suboxic areas. In the north, climate induced increase in riverine inputs of allochthonous DOM is likely to promote bacterioplankton production, while phytoplankton primary production will be hampered due to increased light attenuation in the water. This, in turn, can decrease the production at higher trophic levels, since bacteria-based food webs in general are less efficient than food webs based on phytoplankton. However, complex environmental influences on the bacterial community structure and the large redundancy of metabolic functions limit the possibility of predicting how the bacterial community composition will change under climate change disturbances.
|
Page generated in 0.1 seconds