• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

THE FORMATION OF CARBON DIOXIDE HYDRATE IN SOLID SUSPENSIONS AND ELECTROLYTES

Lamorena, Rheo B., Lee, Woojin 07 1900 (has links)
Evaluation of host geologic sediment interactions with carbon dioxide is very important in sequestration strategies. The objective of the study is to experimentally investigate the effects of different soil mineral types on carbon dioxide hydrate formation. At isothermal, isochoric, and isobaric conditions, batch experiments were conducted with different types of solids (bentonite, kaolinite, nontronite, pyrite, and soil) and electrolytes (NaCl, KCl, CaCl2, and MgCl2) to measure carbon dioxide hydrate formation times. A 50 mL pressurized vessel was used for the experiment by bubbling gaseous CO2 into the solid suspension. We observed that the formation time of carbon dioxide hydrate was dependent on the reactor temperature (273.4 K and 277.1 K) and types of solid and electrolyte. A clear peak was observed in the temperature profile of each experimental run and determined as the hydrate formation time. This is due to the initiation of the hydrate crystallization and latent heat release at the hydrate formation time. The temperature profiles vary significantly with respect to the types of solids and electrolytes. As crystallization initiates, peaks were observed at higher temperatures in pyrite and soil suspensions. The results showed that hydrate formation times for clay minerals in water were approximately twice and 10 times faster than that for pyrite and soil, respectively. The rates of gas consumption were able to be determined by the pressure monitoring. The kaolinite appeared to have the fastest gas consumption rate among the clay mineral suspensions, which was 2.4 times and 7.4 times faster than nontronite and bentonite, respectively. Results from these experiments seem to provide an insight on the formation and growth of carbon dioxide hydrate, once sequestered into the sea bed sediments under the deep sea environment.
2

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
3

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
4

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis 18 February 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.
5

Synthesis of Carbon Dioxide Hydrates in a Slurry Bubble Column

Myre, Denis January 2011 (has links)
Carbon dioxide hydrates were synthesized in a 0.10m I.D. and 1.22m tall bubble column equipped with a cooling jacket for heat removal. Visual observations at different driving forces (pressures between 2.75 and 3.60 MPa and temperatures between 0 and 8ºC) were recorded with a digital camera through a sight glass of 118.8 by 15.6 mm. The superficial gas velocity was varied from 20 to 50 mm/s to attain different levels of turbulence in the liquid. The growth rate was found to be dependent on the sequence/method used to reach the operating temperature and pressure. A greater supersaturation was obtained when the system temperature and pressure were reached with very low or no bubble-induced mixing. As a result, hydrates nucleated and grew immediately when starting the gas flow with the reactor volume being quickly filled with hydrates. Moreover, the hydrate growth rate and solution final density were higher when operating conditions partially condensed CO2 resulting in greater interphase mass transfer rates. In parallel, since hydrate formation is an exothermic process and the reaction is often limited by the rate of heat removal, heat transfer measurements were achieved in a simulated hydrate environment. The instantaneous heat transfer coefficient and related statistics gave insight on the role of bubbles on heat transfer and hydrodynamics.

Page generated in 0.0625 seconds