1 |
Genetic and Environmental Effects on Growth, Resin and Rubber Production in Guayule (Parthenium Argentatum, Gray)Blohm, Maren Elizabeth Veatch January 2005 (has links)
Guayule (Parthenium argentatum Gray) is a rubber producing plant native to the Chihuahuan Desert, which is currently being investigated as a source of hypoallergenic latex. Current efforts are focusing on increasing latex/rubber production in the plant by either manipulating the rubber biosynthetic pathway, altering agronomic practices to take advantage of environmental conditions that increase rubber synthesis, or both. Field and greenhouse studies were conducted to more fully understand the effect of genetic and environmental manipulation on rubber production in guayule. Three guayule breeding lines were transformed in order to increase the availability of the initiators of rubber synthesis. The tissue-culture-derived transgenic plants and their seed-generated progeny were grown in separate field experiments. Transformation with the genes for the initiators of rubber synthesis did not increase rubber concentration or yield. Height and width had high heritability estimates in the transgenic progeny and were the traits most correlated with rubber yield, while rubber concentration was poorly correlated with height and width. Greenhouse studies were conducted to understand why water stress and low night temperatures increase rubber concentration. Water stress increased the contribution of the stems to the total rubber in the plant and increased the bark to wood ratio of the stem. Most rubber is accumulated in the stems and these two effects of water stress contributed to the increased rubber concentration in water-stressed plants. Low night temperature reduced plant growth without a decrease in carbon exchange. Allocation of carbon fixation products to rubber synthesis rather than growth, contribute to the high rubber production under low night temperatures. Contributions from both breeders and agronomists are needed to further improve guayule rubber/latex yield.
|
2 |
Multiscale remote sensing of plant physiology and carbon uptakeAtherton, Jon Mark January 2012 (has links)
This study investigated the use of optical remote sensing for estimating leaf and canopy scale light use efficiency (LUE) and carbon exchange. In addition, a new leaf level model capable of predicting dynamic changes in apparent reflectance due to chlorophyll fluorescence was developed. A leaf level study was conducted to assess the applicability of passive remote sensing as a tool to measure the reduction, and the subsequent recovery, of photosynthetic efficiency during the weeks following transplantation. Spectral data were collected on newly planted saplings for a period of 8 weeks, as well as gas exchange measurements of LUE and PAM fluorescence measurements. A set of spectral indices, including the Photochemical Reflectance Index (PRI), were calculated from the reflectance measurements. A marked depression in photosynthetic rate occurred in the weeks after outplanting followed by a gradual increase, with recovery occurring in the later stages of the experimental period. As with photosynthetic rate, there was a marked trend in PRI values over the study period but no trend was observed in chlorophyll based indices. The study demonstrated that hyperspectral remote sensing has the potential to be a useful tool in the detection and monitoring of the dynamic effects of transplant shock. Relationships between hyperspectral reflectance indices, airborne carbon exchange measurements and satellite observations of ground cover were then explored across a heterogeneous Arctic landscape. Measurements were collected during August 2008, using the University of Edinburgh’s research aircraft, from an Arctic forest tundra zone in northern Finland as part of the Arctic Biosphere Atmosphere Coupling at Multiple Scales (ABACUS) study. Surface fluxes of CO2 were calculated using the eddy covariance method from airborne data that were collected from the same platform as hyperspectral reflectance measurements. Airborne CO2 fluxes were compared to MODIS vegetation indices. In addition, LUE was estimated from airborne flux data and compared to airborne measurements of PRI. There were no significant relationships between MODIS vegetation indices and airborne flux observations. There were weak to moderate (R2 = 0.4 in both cases) correlations between PRI and LUE and between PRI and incident radiation. A new coupled physiological radiative transfer model that predicts changes in the apparent reflectance of a leaf, due to chlorophyll fluorescence, was developed. The model relates a physically observable quantity, chlorophyll fluorescence, to the sub leaf level processes that cause the emission. An understanding of the dynamics of the processes that control fluorescence emission on multiple timescales should aid in the interpretation of this complex signal. A Markov Chain Monte Carlo (MCMC) algorithm was used to optimise biochemical model parameters by fitting model simulations of transient chlorophyll fluorescence to measured reflectance spectra. The model was then validated against an independent data set. The model was developed as a precursor to a full canopy scheme. To scale to the canopy and to use the model on trans-seasonal time scales, the effects of temperature and photoinhibition on the model biochemistry needs to be taken into account, and a full canopy radiative transfer scheme, such as FluorMOD, must be developed.
|
3 |
Plant Age Affects the Long-term Growth Responses to Reduced Total Pressure and Oxygen Partial PressureWehkamp, Cara Ann 14 September 2009 (has links)
Fundamental to the future of space exploration is the development of advanced life support systems capable of maintaining crews for significant periods without re-supply from Earth. Bioregenerative life support systems harness natural ecosystem processes and employ plant photosynthesis and transpiration to produce food, supply oxygen, and regenerate water while consuming carbon dioxide. Proposed Lunar and Martian exploration has prompted interest into the effects of hypobaria on plant development. Reduced atmospheric pressure conditions will reduce the pressure gradient between the structure and the local environment thereby decreasing the engineering requirements, leakage and mass required to construct the growth facility. To establish the optimal conditions for reduced pressure plant growth structures it is essential to determine the atmospheric pressure limits required for plant development and growth. Due to its physiological importance, oxygen will compose a significant portion of this atmosphere. The effects of reduced atmospheric pressure and decreased oxygen partial pressures on plant germination, growth and development were assessed in the University of Guelph’s hypobaric plant growth chambers. Treatments included a range of total pressures from 10 to 98 kPa and oxygen partial pressures from 2 to 20 kPa. Results demonstrated that reduced atmospheric pressure had minimal effect on plant growth, net carbon exchange rate and transpiration if the physiologically important gases including carbon
dioxide, oxygen and water vapour, were maintained above threshold levels. The reduction of oxygen partial pressures below 7 kPa had drastic consequences across all atmospheric pressures with poor germination, seedling establishment and growth. It is evident that the response of plants grown at reduced pressures from young seedlings differs from that of older plants that were established at ambient conditions and then subjected to the atmospheric adjustment. The young plant tissues adapt in response to the extreme conditions and maintain productivity despite the limited atmosphere. / Natural Science and Engineering Research Council, Canadian Space Agency, Ontario Graduate Student Program, Canadian Foundation for Innovation, Ontario Innovation Trust
|
4 |
Data-driven approaches for sustainable operation and defensible results in a long-term, multi-site ecosystem flux measurement programBrodeur, Jason 04 1900 (has links)
<p>Modern advances in biometeorological monitoring technology have improved the capacity for measuring ecosystem exchanges of mass, energy and scalars (such as CO<sub>2</sub>). Translating these measurements into robust and accurate scientific information (and ultimately, understanding) requires careful assessment of operations throughout the biometeorological data life cycle. In response, this research analyzed and optimized aspects of data collection, management and filtering for an ecosystem exchange measurement program over an age-sequence of temperate white pine forests.</p> <p>A comprehensive data workflow and management system (DWMS) was developed and implemented to support the entire data life cycle for all past, present and future measurement operations in our research group, and meet the needs of a collaborative, student-led data management environment. Best practices for biometeorological data management were introduced and used as standards to assess system performance.</p> <p>Roving eddy covariance (rEC) systems were examined as a means of producing reliable time-integrated carbon exchange estimates at multiple sites, by rotating an EC system in a resource-mindful approach. When used with an optimal gap-filling model and rEC rotation schedule (2 sites with 15-day rotations), the results suggested its viability, as annual NEE estimate uncertainties ranged between 35 and 63% of the annual NEE flux magnitude at our study sites – even though approximately 70% of half-hours were filled.</p> <p>Lastly, a data-driven approach was used to investigate the effects of different friction velocity and footprint filtering methods on time-integrated carbon exchange estimates at our fetch-limited forests. Though predicted flux source areas varied considerably between footprint models, our objective analyses identified the model (Kljun et al., 2004) and within-fetch requirement (80%) that optimized reliability and representativeness of carbon exchange estimates. Applying this footprint model decreased annual NEE by 31 to 129% (59 to 207 g C m<sup>-2</sup> y<sup>-1</sup>) relative to no footprint application, and highlighted the importance of objective analyses of EC flux filtering methods.</p> / Doctor of Philosophy (PhD)
|
5 |
Climatic Controls on Phenology and Carbon Dynamics in Temperate Deciduous and Coniferous Forests / Carbon Dynamics in Temperate ForestsBeamesderfer, Eric R. January 2019 (has links)
Forests ecosystems cover about 30% of the Earth’s land surface, corresponding to an area of roughly 42 million km2 globally. Forests play an important role in the global carbon cycle by exchanging carbon dioxide (CO2) with the atmosphere. Annually, forests act to effectively sequester large amounts of anthropogenically-emitted CO2 from the atmosphere through photosynthetic processes. Through the unparalleled increase of CO2 emissions over the past century and the subsequent climatic inconsistencies due to global climate change, the carbon sink-capacity of the world’s forests remains uncertain. Furthermore, since increasing temperatures have been shown to extend the vegetative growing season in forests, phenological responses to this change are of particular interest. In an effort to effectively assess the future carbon sequestration potential of forests, a better understanding of the climatic controls on phenology, and its influence on carbon processes, is needed.
The eddy covariance (EC) technique is a stand-level, in-situ, method used widely to assess the net CO2 exchange across the canopy-atmosphere interface. Together with meteorological data, the sequestration of CO2 and the subsequent ecosystem productivity can be quantified over various time scales (half-hours to decades). This dissertation reports results from field observations of EC measured fluxes that were used to study the climatic impacts on forest phenology and the resulting carbon dynamics in southern Ontario, Canada. The study sites, part of the Turkey Point Observatory, consisted of two similarly-aged, temperate, North American forests growing under similar climatic and edaphic conditions: the 80-year old (in 2019) white pine plantation (coniferous evergreen) and 90+ year-old, naturally-regenerated, white oak (deciduous broadleaf) forest. These forests were studied from 2012 to 2017, using the EC technique, digital phenological cameras, and remote-sensing measurements.
At the deciduous broadleaf forest, mid-summer (July and August) meteorological conditions were the key period in determining the annual carbon sink-strength of the site, acting to regulate the interannual variability in carbon uptake. The forest experienced higher net ecosystem productivity (+NEP; carbon sink) when soil temperatures ranged from 15 to 20°C and vapor pressure deficit was 0.7 and 1.2 kPa. From 2012 to 2016, the forest remained a net annual sink, with mean NEP of 206 ± 92 g C m-2 yr-1, similar to that of other North American deciduous forests.
Spring and autumn phenological transition dates were calculated for each year (2012 to 2017) from measured EC data and digital camera greenness indices. The timing of spring and autumn transition dates were impacted by seasonal changes in air temperature and other meteorological variables. Contrary to past studies, an earlier growing season start did not equate to increased annual carbon uptake. In autumn, a later end to the deciduous forest growing season negatively impacted the net carbon uptake of the forest, as ecosystem respiration (RE) outweighed the gains of photosynthesis. The digital camera indices failed to capture the peak dates of photosynthesis, but accurately measured the spring and autumn transition dates, which may be useful in future remote sensing applications.
A comparison of the two forests from 2012 to 2017 found the coniferous forest to have higher but more variable annual NEP (218 ± 109 g C m-2 yr-1) compared to that of the deciduous broadleaf forest (200 ± 83 g C m-2 yr-1). Similarly, the mean annual evapotranspiration (ET) was higher (442 ± 33 mm yr-1) at the coniferous forest compared to that of the broadleaf forest (388 ± 34 mm yr-1). The greatest difference between years resulted from the response to heat and drought. During drought years, deciduous carbon and water fluxes were less sensitive to changes in temperature or water availability compared to the evergreen forest.
Carotenoid sensitive vegetative indices and the red-edge chlorophyll index were shown to effectively capture seasonal changes in photosynthesis phenology within both forests via proximal remote sensing measurements during the 2016 growing season. Satellite vegetative indices were highly correlated to EC photosynthesis, but significant interannual variability resulted from either meteorological inputs or the heterogeneous landscapes of the agriculturally-dominated study area.
This dissertation improved our understanding of the dynamics of carbon exchange within the northeastern North American deciduous forest ecozone, through the examination of climatic variability and its impact on carbon and phenology. This dissertation also contributed to efforts being made to better evaluate the impact of species composition on carbon dynamics in geographically similar forests. Moreover, the use of the digital phenological camera observations and remote sensing techniques to complement and better understand the fluxes observed with the EC method was innovative and may help other researchers in future studies. / Dissertation / Doctor of Philosophy (PhD)
|
6 |
SPATIAL HETEROGENEITY AND HYDROLOGICAL CONNECTIVITY IN A DRYLAND, ANABRANCHING FLOODPLAIN RIVER SYSTEMMcGinness, Heather M., n/a January 2007 (has links)
Riverine landscapes are complex. More than just a single channel, they comprise a
shifting mosaic of hydrogeomorphic patches with varying physical and biological
characteristics. These patches are connected by water during flows of varying magnitude
and frequency, at a range of spatial and temporal scales. Combined, landscape
complexity and hydrological connectivity create biological diversity that in turn
maintains the productivity, ecological function, and resilience of these systems. This
thesis investigates the ecological importance of spatial heterogeneity and temporal
hydrological connectivity in a dryland floodplain river landscape. It focuses on
anabranch channels, and uses major carbon sources in these and adjacent landscape
patches as indicators of ecological pattern and process.
A conceptual model was proposed, describing the potential effects upon the distribution
and availability of major carbon sources of: a) a spatial mosaic of hydrogeomorphic
patches in the landscape (e.g. anabranches, river channel, and wider floodplain); and b)
four primary temporal phases of hydrological connection during flow pulses
(disconnection, partial connection, complete connection, and draining). This was then
tested by data collected over a three year period from a 16 km reach of the lower
Macintyre River (NSW/QLD Australia). Results were examined at multiple spatial
scales (patch scale � river channel vs. anabranches vs. floodplain; between individual
anabranches; and within anabranches � entry, middle and exit sites).
The data indicate that spatial heterogeneity in the lower Macintyre River landscape
significantly influences ecological pattern. Carbon quantity was greater in anabranch
channels compared to adjacent river channel patches, but not compared to the floodplain;
while carbon quality was greater in anabranch channels compared to both adjacent river
channel and floodplain patches. Stable isotope analysis indicated that carbon sources that
were predominantly found in anabranch channels supported both anabranch and river
organisms during a winter disconnection phase. Other carbon sources found in the main
river channel and the wider floodplain appeared to play a comparatively minimal role in
the food web.
Different phases of hydrological connection between anabranch channels and the main
river channel were associated with differences in the availability of carbon sources. In the
river channel, draining of water from anabranches (the draining phase) was associated
with relatively high concentrations of dissolved organic carbon (DOC) and low
concentrations of phytoplankton. Conversely, the disconnection phase was associated
with relatively low concentrations of DOC and high concentrations of phytoplankton in
the river channel. In anabranch channels and their waterbodies, the disconnection and
draining phases were associated with high concentrations of both DOC and
phytoplankton. Concentrations of these carbon sources were lowest in anabranches
during the partial and complete connection phases.
Different hydrological connection phases were also associated with changes in trophic
status in the aquatic components of the landscape. On the riverbanks, relatively low rates
of benthic production and respiration during the complete connection phase were
associated with heterotrophy. The remaining phases appeared to be autotrophic. Benthic
production on riverbanks was greatest during the disconnection phase, and respiration
was greatest during the partial connection phase. In the anabranch channels, rates of
production and respiration were similar during the disconnection phase, and were
associated with heterotrophy in the anabranch waterbodies. The remaining phases
appeared to be autotrophic. Respiration was greatest in anabranches during the
disconnection phase, and production was greatest during the draining phase. Both
production and respiration were lowest during complete connection. These differences
and changes varied according to the landscape patch examined.
At a landscape scale, anabranch channels act as both sinks and suppliers of carbon. High
rates of sediment deposition facilitate their role as sinks for sediment-associated carbon
and other particulate, refractory carbon sources. Simultaneously, anabranch channels
supply aquatic carbon sources from their waterbodies, as well as via processes such as
inundation-stimulated release of DOC from surface sediments. Modelled data indicated
that water resource development reduces the frequency and duration of connection
between anabranch channels and the main river channel. This loss of landscape
complexity via loss of connectivity with anabranches has the potential to reduce the total
availability of carbon sources to the ecosystem, as demonstrated by a modelled 13%
reduction in potential dissolved organic carbon release from anabranch sediments.
This thesis has demonstrated the importance of spatial heterogeneity in riverine
landscapes, by documenting its association with variability in the distribution and quality
of primary energy sources for the ecosystem. It has shown that this variability is
augmented by different phases of hydrological connectivity over time. Spatial
heterogeneity and hydrological connectivity interact to increase the diversity and
availability of ecological energy sources across the riverine landscape, at multiple spatial
and temporal scales. This has positive implications for the resilience and sustainability of
the system. Anabranch channels are particularly important facilitators of these effects in
this dryland floodplain river system. Anabranch channels are �intermediate� in terms of
spatial placement, temporal hydrological connection, and availability of carbon sources;
of high value in terms of high-quality carbon sources; and relatively easy to target for
management because of their defined commence-to-flow levels. Further research should
be directed toward evaluating other ecological roles of anabranch channels in dryland
rivers, thereby providing a more complete understanding of the importance of
connectivity between these features and other patches. This knowledge would assist
management of floodplain river landscapes at larger regional scales, including
amelioration of the effects of water resource development.
|
7 |
Yield and Carbon Exchange of Sorghum Grown as Advanced Biofuel Feedstock onAbandoned Agricultural Land in Southeastern OhioGrennell, Jonathan L. 24 September 2014 (has links)
No description available.
|
8 |
Ecophysiology and ecosystem-level impacts of an invasive C4 perennial grass, Bothriochloa ischaemumBasham, Tamara Sue 11 February 2014 (has links)
The anthropogenic introduction of species into new ecosystems is a global phenomenon, and identifying the mechanisms by which some introduced species become dominant in their introduced ranges (i.e., invasive) is crucial to predicting, preventing, and mitigating the impacts of biological invasions. Introduced perennial C₄ grasses are invading semi-arid grassland and savanna ecosystems throughout the south-central U.S. We hypothesized that in these semi-arid ecosystems, where variable precipitation patterns strongly influence vegetation dynamics, the success of an invasive plant species may be due in part to ecophysiological traits that enable high performance in response to unpredictable water availability. We also hypothesized that increased primary productivity and decreased plant input quality associated with these grass invasions have the potential to alter ecosystem carbon and nitrogen cycling and storage by altering the ratio of inputs (productivity) to outputs (decomposition/respiration). We tested the first hypothesis by quantifying ecophysiological performance differences between an invasive C₄ grass, Bothriochloa ischaemum, and co-occurring C₃ and C₄ native grasses under wet and dry conditions in the field and under two levels of simulated precipitation frequencies in a greenhouse experiment. We tested the second hypothesis by examining whether increased primary productivity and decreased C₃:C₄ grass ratios in savanna grass-matrices associated with B. ischaemum invasion altered (1) plant input quality and thus nutrient cycling and/or (2) net ecosystem carbon uptake in invaded areas. B. ischaemum's success as an invader was not directly related to its ability to cope with precipitation variability and availability, but its ability to rapidly produce large amounts of biomass may allow it to directly out-compete native species. B. ischaemum invasion decreased plant input quality and soil nitrogen availability. B. ischaemum invasion shifted ecosystem C-uptake from being nearly year-round to occurring predominantly in the summer. Greater C-uptake during the summer and under drier conditions compensated for a shorter growing seasons in B. ischaemum-invaded areas and cumulative annual NEE was similar between invaded and native-dominated areas. We conclude that B. ischaemum's impacts on soil nitrogen availability and plant-canopy microhabitat may allow it to exclude native species from invaded areas, but that its impacts on ecosystem C sequestration may be small. / text
|
Page generated in 0.0439 seconds