• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Making of a Performance and Low Cost Heterogeneous Composite Bipolar Plate and the Performance analysis of PEMFC with This New Plate

He, Jheng-ru 14 July 2004 (has links)
Abstract Traditional unipolar/bipolar plates, such as the metal and the graphite unipolar/bipolar plates, are expensive, weight heavy and volume large, so that it is hard to be used in the portable application. A high efficiency, low cost and lightweight portable proton exchange membrane fuel cell (called PEMFC or called HFC when using pure hydrogen fuel), which is made with a new heterogeneous composite carbon fiber bipolar plate and a MEA, is developed in our lab. There are many advantages of the new carbon fiber unipolar/bipolar plates, such as low contact resistance, low cost, lightweight and small volume. We hope that the new unipolar/bipolar plate will be able to replace the conventional metal and graphite unipolar/bipolar plates in the future. The characteristics of a portable PEMFC in different operational conditions are studied in this research. From our experimental result, we find that the factors which affect the HFC performance include the gas temperature, humidity ratio, inlet gas pressure in anode, the geometry of inlet ports, the flow channels within cell, and the oxidant flow rate etc. In addition, the contact resistances between different materials within each cell all strongly influence HFC performance. The ribs of the carbon fiber unipolar/bipolar plates is pored structure, and the gas diffusion layer is no deformation because of only slight compression in stack assembly; therefore, the reactive gas can easily flow into the most of active area. In addition, the contact resistance between the carbon fiber unipolar plate and the gas diffusion layer is lower than that between the traditional unipolar plate and the gas diffusion layer, so that the electrons in active layer is easily to exit or enter this region. The experimental result at 1.15 atm and 40 oC displays that the current density with the new unipolar plate is about twice higher than that with the graphite unipolar plate at overpotential 0.6 V. With air as an oxidizer, we find that increasing the fan rotation speed can avoid output-voltage decay in high current density, but the design with fan is unfavorable for portable application. So a front open unipolar plate and air-breathing design is adopted on the cathode. The power density of this design is slightly lower than that with fan, but it still can reach a value 160 mW/cm2 without any heating and humidification in the anode. Because this design needs little supplement device, the application in portable fuel cells of the new design will be wider than that of a traditional design.
2

Studies of a New-type Heterogeneous Composite Carbon Fiber Bipolar Plate Applied to a Portable Pure Hydrogen Proton Exchange Membrane Fuel Cell

Lo, Ming-Yuan 21 July 2005 (has links)
A new type of heterogeneous carbon fiber bunch bipolar plate developed in our lab is applied to portable pure hydrogen proton exchange membrane fuel cell stacks. Several different types of bipolar plate structures have been designed, and the voltages and currents of these fuel cell stacks are measured to compare their performance. The new type of heterogeneous carbon fiber bunch bipolar plate is well in low contact resistance, weight low, small volume and the flexible geometry shape. Due to its flexible structure of carbon fiber bunch, the compressing pressure is small while assembling stack so that the electrode can not be over compressed and out of shape. Therefore the high porosity of diffusion layer can be keep and reaction gas can enter and distribute to all reaction areas easily. For using to portable equipments, a small 6-cell flat type of fuel cell stack are developed firstly. The total weight is about 75g and the total volume is about 68cm . The second stack is cylinder-type(I) fuel cell stack. The total weight is about 60g and the total volume is about 71cm . The third stack is cylinder-type (II). The total weight has been reduced to about 20g and the total volume has been reduced to about 30cm . Above three kinds of the 6-cell stacks the total electrode area is 13.5cm . Using Nafion, the catalyst content anode Pt 0.4mg/cm , cathode Pt 1.0mg/cm , On room temperature and inlet hydrogen gauge pressure 0.15atm air-breathing, total output power of the cylinder (II) can reach 1.85W, and the power density of unit area can reach about 137mW/cm^2.

Page generated in 0.0718 seconds