• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 54
  • 8
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 126
  • 126
  • 41
  • 35
  • 27
  • 23
  • 20
  • 18
  • 18
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Dynamic response of structural steel elements post-strengthened with CFRP

Kadhim, Majid January 2017 (has links)
Structural elements in buildings and civil engineering infrastructure can often be vulnerable to various kinds of impact actions during their service life. These actions could result from various sources e.g. collision of vehicles, ships and vessels or falling masses in industrial buildings. Since, for various reasons, such accidental actions have not always been considered in the existing engineering design of buildings and civil engineering structures such as bridges etc., investigation of effective structural strengthening techniques is justified. As fibre reinforced polymer (FRP) composites have commonly been employed efficiently to strengthen steel members against static and fatigue loads, examining the FRP strengthening technique to enhance structural steelwork in impact situations is the main focus of this study. The research aims to experimentally investigate the dynamic behavioural response of axially loaded steel columns and steel beams strengthened with various carbon fibre reinforced polymer (CFRP) configurations. To achieve this goal, a series of experimental tests was implemented including testing a number of CFRP strengthened and unstrengthened steel beams and columns under static and impact loads. The experimental results show that CFRP can improve the global and local behaviour of steel members subjected to impact loads. This improvement varied depending on the CFRP configuration, the amount of CFRP and the pre-existing axial load value in the member. In order to examine all the parameters that can affect the dynamic behaviour of CFRP strengthened steel members in addition to those not included in the experimental programme, a comprehensive numerical simulation of the experimental work was carried out using a validated finite element model. Afterwards, an extensive parametric study was conducted to provide a comprehensive understanding of the behaviour of CFRP strengthened steel members subjected to impact load. The simulation results illustrate that the effectiveness of CFRP increases with high impact energies. The parametric study results have also revealed that the configurations and distributions of CFRP have a major influence on the effectiveness of the reinforcement. A detailed numerical assessment has also been performed to find the CFRP effectiveness when applied to full-scale steel columns. It has been found that strengthening with CFRP in practical quantities and configurations could prevent steel columns from failure under transverse impact loading. The strengthening effectiveness was found to be dependent on boundary conditions, impact velocity, impact mass, impact location, preloading level, impact direction, CFRP configuration, and the length and thickness of the CFRP. Based on the results obtained from the full-scale simulation, it has been found that the CFRP strengthening technique can be used efficiently and effectively at the scale of elements common in everyday building and infrastructure. This study also provides a useful database for different kinds of strengthening configurations, impact velocities and masses, boundary conditions, etc.
22

The development and application of a delamination prediction method to composite structures

Hill, G. F. J. January 2000 (has links)
A method of predicting delamination in fibre-reinforced composite materials including several previously disregarded strength issues is presented. Thermal residual stresses, volume of stressed material, in-plane stresses and the hydrostatic stress in the polymer matrix are introduced and their influence on composite material strength discussed. These factors are then applied in a stress based method for predicting delamination which can deal with both unidirectional and general laminates. The results from a series of scaled unidirectional specimens designed to produce interlaminar tensile strength data are used to determine the strength parameters for the method. The method is shown to be effective in predicting failure in the fill-in region of two 'T'- piece specimen designs to within 14%. The failures were dominated by tension acting between fibres in large blocks of unidirectional material which had high thermal residual stresses and tensile hydrostatic stress due to constraint from the surrounding material. The method is also applied to a series of test pieces which used general laminates. The designs are based on sandwich panel sections and a tapered I-beam specimen. In the sandwich panel specimens, the edge closure sections were constructed using 0,90 and ±45° plies. Delamination occurred in a region of dropped plies and curvature making all the stress components important in producing accurate predictions, which are within 16% of the failure loads in testing. The tapered I-beam specimens were designed to delaminate in a doubly-curved laminate region of 90 and ±45° plies. The delamination predictions were within 13% of the first delamination loads found in testing. The method produced failure predictions which were all within 16% of the failure loads of the tested specimens. It is found that the local geometry of the delamination region is critical in determining the stress levels in the specimens and therefore their strength. Variations in the manufacture of such specimens and components is therefore clearly important in establishing the delamination loads of composite structures.
23

Laser cutting of carbon fibre-reinforced polymer composite materials

Negarestani, Reza January 2010 (has links)
Carbon fibre-reinforced polymer (CFRP) composite materials are in increasingly high demand, particularly in aerospace and automotive industries for reduced fuel consumption. This is due to their superior structural characteristics (both in fatigue and static conditions) and light weight. Anisotropic and heterogeneous features of these materials, however, have posed serious challenges in machining of CFRPs. Hence new machining technologies need to be investigated. Laser is a non-contact (eliminating toolwear) thermal process. Therefore, the thermal properties of the material are of crucial importance. Especially for composite materials which consist of different constituent materials. In CFRPs, carbon fibres are excellent conductors of heat (thermal conductivity of 50 W/(m.K)) while the polymer matrix is poor conductor (thermal conductivity of 0.1-0.3 W/(m.K)). This significant difference that can be similarly traced for other thermal properties such as heat of vaporisation and specific heat capacity are the source of defects in laser cutting of CFRP composites. Major quality challenges in laser cutting of these materials are delamination and matrix recession. Various laser systems and cutting techniques are investigated in this work to minimise these defects. Multiple-pass cutting using a high beam quality continuous wave (CW) mode fibre laser is found to be effective to minimise delamination at low power level and high scanning speeds. Multiple-pass cutting using nanosecond pulsed DPSS Nd:YAG laser is shown to reduce matrix recession. A novel technique using mixing of reactive and inert gases is introduced and demonstrated to minimise the matrix recession. In order to improve the quality and dimensional accuracy of CFRP laser machining, it is important to understand the mechanism of transient thermal behaviour and its effect on material removal. A three-dimensional model to simulate the transient temperature field and subsequent material removal is developed, for the first time, on a heterogeneous fibre-matrix mesh. In addition to the transient temperature field, the model also predicts the dimensions of the matrix recession during the laser machining process.
24

Shear properties of unidirectional carbon fibre composites

Broughton, William Richard January 1990 (has links)
No description available.
25

Strengthening Steel Section Using Carbon Fibre Reinforced Polymer Laminates

Lam, Dennis, Clark, K.A. January 2003 (has links)
No
26

Predicting Failure for Steel Beams Strengthened with Carbon Fibre Reinforced Polymers Laminates

Lam, Dennis January 2005 (has links)
No
27

An Introduction to Carbon Fibre Reinforced Plastic

Hewitt, Roy Lawrence 05 1900 (has links)
<p> The development and properties of carbon fibre are reviewed together with the properties and applications of carbon fibre reinforced plastic. Techniques for fabricating this material and certain design problems are discussed and future developments considered.</p> <p> Some simple predictions of the elastic moduli of fibre reinforced composites are compared with experimental data and a modification for the prediction of the longitudinal shear modulus suggested. Typical values for the elastic moduli of carbon fibre reinforced plastic are presented.</p> <p> A method for predicting the behaviour of laminated composite structures, which is more realistic than conventional netting analysis, is described and a computer programme for determining the strength and stiffness of such structures included.</p> / Thesis / Master of Engineering (MEngr)
28

Measurement and Analysis of Flow in 3D Preforms for Aerospace Composites

Stewart, Andrew L 16 November 2012 (has links)
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.
29

Growth of carbon nanotubes on electrospun cellulose fibres for high performance supercapacitors and carbon fibre composites

Li, Qiang January 2018 (has links)
The production of cellulose derived hybrid carbon nanofibre (CNF)/carbon nanotubes (CNTs) electrodes for the fabrication of supercapacitors and carbon fibre composites was investigated. The CNTs were grown via a floating catalyst chemical vapor deposition (CVD) method on the top surface of electrospun cellulose derived CNFs. These CNF and CNF/CNTs samples were then used as electrodes to produce liquid electrolyte-based supercapacitors. The growth of CNTs leads to an improvement of electrochemical performance compared to the plain CNFs. This improvement is due to the grown CNTs enlarging the reactive sites through enhanced surface area and porosity, and thereby increasing the conductivity of the system. CNTs have been also grown onto CNFs containing ferrocene and SiC particles. Composites were fabricated by combining the fibres and CNTs grown fibres with model polymers. The stress transfer properties of these materials have been estimated using an in situ Raman spectroscopic method by observing the shift of the Raman band during the tensile deformation of model polymer composites. Using this method, the elastic modulus of CNF/SiC/CNTs fibres has been estimated to be 208 ± 26 GPa. No shifts in the peak positions of bands relating to the carbon structure were obtained for in situ Raman spectroscopic studies of the CNF/CNTs fibres made from the ferrocene embedded fibres. This was thought to be due to the low yield of CNTs on the surface of the fibres. Furthermore, CNF/CNTs electrode-based structural supercapacitors, combining a solid electrolyte with the carbonized fibres, have been produced. These CNF/CNTs electrodes have a better capacitive performance than the plain CNF electrodes. There was a decrease in this performance with increased curing time of the resin, from 2 to 24 h, due to a lack of charge carrier mobility in the latter samples. A Raman spectroscopic study of the deformation of the carbon structures showed that the G-band shift towards a lower wavenumber position for the CNF and CNF/CNTs samples processed at a carbonization temperature of 2000 °C. Moduli of these fibres were estimated to be ~145 GPa and ~271 GPa, respectively, suggesting the growth of CNTs not only enhances the capacitive performance but also the mechanical properties of the structural supercapacitors. No Raman bend shift was found for the CNFs and CNF/CNTs samples processed below a carbonization temperature of 2000 °C, e.g. 900 °C and 1500 °C. This is because the graphitic structures are not well developed at carbonization temperatures below 1500 °C.
30

Measurement and Analysis of Flow in 3D Preforms for Aerospace Composites

Stewart, Andrew L 16 November 2012 (has links)
Composite materials have become viable alternatives to traditional engineering materials for many different product categories. Liquid transfer moulding (LTM) processes, specifically resin transfer moulding (RTM), is a cost-effective manufacturing technique for creating high performance composite parts. These parts can be tailor-made to their specific application by optimizing the properties of the textile preform. Preforms which require little or no further assembly work and are close to the shape of the final part are critical to obtaining high quality parts while simultaneously reducing labour and costs associated with other composite manufacturing techniques. One type of fabric which is well suited for near-net- shape preforms is stitched non-crimp fabrics. These fabrics offer very high in-plane strength and stiffness while also having increased resistance to delamination. Manufacturing parts from these dry preforms typically involves long-scale fluid flow through both open channels and porous fibre bundles. This thesis documents and analyzes the flow of fluid through preforms manufactured from non-crimp fabrics featuring through-thickness stitches. The objective of this research is to determine the effect of this type of stitch on the RTM injection process. All of the tests used preforms with fibre volume fractions representative of primary and secondary structural parts. A series of trials was conducted using different fibre materials, flow rates, fibre volumes fractions, and degrees of fibre consolidation. All of the trials were conducted for cases similar to RTM. Consolidation of the fibres showed improvements to both the thoroughness of the filling and to the fibre volume fraction. Experimentally determined permeability data was shown to trend well with simple models and precision of the permeability data was comparable to values presented by other authors who studied fabrics which did not feature the through-thickness stitches.

Page generated in 0.0587 seconds