• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Oxidation of a 1.5 Percent Silicon-Iron Alloy in Carbon Dioxide - Carbon Monoxide Atmospheres

Logani, Ramesh Chandra 10 1900 (has links)
<p> The oxidation kinetics of a 1.5 ʷ/ₒ silicon-iron alloy in atmospheres of carbon dioxide - carbon monoxide at 890ºC and 1000ºC have been determined with a gravimetric balance as a function of gas composition. The reaction was observed to proceed in three stages. </p> <p> In The initial stage simultaneous growth of wustite-fayalite nodules and an amorphous silica film on different regions of the specimen was observed and this mixed reaction continued until complete coverage by a uniform scale was achieved. A model involving bother lateral and vertical growth of the oxide nodules and vertical growth of the silica film has been proposed to rationalize these kinetics. </p> <p> The second stage involving fluctuations in the reaction rate was observed in atmospheres of low oxidizing potential. These fluctuations were associated with the formation of massive fayalite bands, brought about by silicon supersaturation of the wustite and alloy. At high oxidizing potentials, this stage was not observed. </p> <p> At long times, a third stage consisting of linear reaction kinetics was observed. A model based on gas-oxide interfacial reaction control, involving the dissociation of carbon dioxide and incorporation of the chemisorbed oxygen into the wustite lattice has been advanced to describe these kinetics. The observed gas pressure dependence of the linear rate constants is consistent with the model. </p> / Thesis / Doctor of Philosophy (PhD)
2

Quantifying Global Exchanges of Methane and Carbon Monoxide Between Terrestrial Ecosystems and The Atmosphere Using Process-based Biogeochemistry Models

Licheng Liu (8771531) 02 May 2020 (has links)
<p>Methane (CH<sub>4</sub>) is the second most powerful greenhouse gas (GHG) behind carbon dioxide (CO<sub>2</sub>), and is able to trap a large amount of long-wave radiation, leading to surface warming. Carbon monoxide (CO) plays an important role in controlling the oxidizing capacity of the atmosphere by reacting with OH radicals that affect atmospheric CH<sub>4</sub> dynamics. Terrestrial ecosystems play an important role in determining the amount of these gases into the atmosphere. However, global quantifications of CH<sub>4</sub> emissions from wetlands and its sinks from uplands, and CO exchanges between land and the atmosphere are still fraught with large uncertainties, presenting a big challenge to interpret complex atmospheric CH<sub>4</sub> dynamics in recent decades. In this dissertation, I apply modeling approaches to estimate the global CH<sub>4</sub> and CO exchanges between land ecosystems and the atmosphere and analyze how they respond to contemporary and future climate change.</p> <p>Firstly, I develop a process-based biogeochemistry model embedded in Terrestrial Ecosystem Model (TEM) to quantify the CO exchange between soils and the atmosphere at the global scale (Chapter 2). Parameterizations were conducted by using the CO <i>in situ</i> data for eleven representative ecosystem types. The model is then extrapolated to global terrestrial ecosystems. Globally soils act as a sink of atmospheric CO. Areas near the equator, Eastern US, Europe and eastern Asia will be the largest sink regions due to their optimum soil moisture and high temperature. The annual global soil net flux of atmospheric CO is primarily controlled by air temperature, soil temperature, SOC and atmospheric CO concentrations, while its monthly variation is mainly determined by air temperature, precipitation, soil temperature and soil moisture. </p> <p>Secondly, to better quantify the global CH<sub>4</sub> emissions from wetlands and their uncertainties, I revise, parameterize and verify a process-based biogeochemical model for methane for various wetland ecosystems (Chapter 3). The model is then extrapolated to the global scale to quantify the uncertainty induced from four different types of uncertainty sources including parameterization, wetland type distribution, wetland area distribution and meteorological input. Spatially, the northeast US and Amazon are two hotspots of CH<sub>4</sub> emissions, while consumption hotspots are in the eastern US and eastern China. The relationships between both wetland emissions and upland consumption and El Niño and La Niña events are analyzed. This study highlights the need for more in situ methane flux data, more accurate wetland type and area distribution information to better constrain the model uncertainty.</p> <p>Thirdly, to further constrain the global wetland CH<sub>4</sub> emissions, I develop a predictive model of CH<sub>4</sub> emissions using an artificial neural network (ANN) approach and available field observations of CH<sub>4</sub> fluxes (Chapter 4). Eleven explanatory variables including three transient climate variables (precipitation, air temperature and solar radiation) and eight static soil property variables are considered in developing the ANN models. The models are then extrapolated to the global scale to estimate monthly CH<sub>4</sub> emissions from 1979 to 2099. Significant interannual and seasonal variations of wetland CH<sub>4</sub> emissions exist in the past four decades, and the emissions in this period are most sensitive to variations in solar radiation and air temperature. This study reduced the uncertainty in global CH<sub>4</sub> emissions from wetlands and called for better characterizing variations of wetland areas and water table position and more long-term observations of CH<sub>4</sub> fluxes in tropical regions.</p> <p>Finally, in order to study a new pathway of CH<sub>4</sub> emissions from palm tree stem, I develop a two-dimensional diffusion model. The model is optimized using field data of methane emissions from palm tree stems (Chapter 5). The model is then extrapolated to Pastaza-Marañón foreland basin (PMFB) in Peru by using a process-based biogeochemical model. To our knowledge, this is among the first efforts to quantify regional CH<sub>4</sub> emissions through this pathway. The estimates can be improved by considering the effects of changes in temperature, precipitation and radiation and using long-period continuous flux observations. Regional and global estimates of CH<sub>4</sub> emissions through this pathway can be further constrained using more accurate palm swamp classification and spatial distribution data of palm trees at the global scale.</p>

Page generated in 0.0915 seconds