• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Nitrogen fertilization and tree species effect on the soil microbial communities and consequences for soil carbon

Schaap, James Cornelis January 2011 (has links)
In the face of ever increasing atmospheric CO₂ a better understanding of soil properties and processes and the effect of management practices, such as the application of nitrogen fertilizer is of importance and could potentially improve our ability to sustainably manage forestry systems. With that in mind this study was conducted in order to investigate the effects of tree species and fertilization on soil carbon and the soil microbial community. To this end, soil from fertilized and unfertilized plots at Berwick forest, under stands of Pinus radiata and Sequoia sempervirens at Hanmer and under six different tree species at Holt forest was sampled. Two glasshouse pot trials were established using soil collected from the Hanmer and Berwick forest sites and seedlings of Pinus radiata, Sequoia sempervirens, and Eucalyptus nitens were grown. Soil properties were determined from both the field sites and pot trials including soil organic matter, carbon, nitrogen, and microbial biomass by chloroform fumigation extraction. Biolog ecoplates were used to determine the relative differences in diversity based on substrate utilization patterns of the soil microbial communities in soil sampled from the glasshouse pot trials. Soil microbial biomass carbon, nitrogen and the ratio of microbial biomass carbon:nitrogen differed significantly between Pinus radiata and the other tree species sampled at Holt forest. Significant effects of fertilization and tree species on soil carbon and microbial biomass were observed in both pot trials. Soil carbon differed significantly between Eucalyptus nitens and both Pinus radiata and Sequoia sempervirens in the first pot trial and relative to both, E. nitens contributed significantly more carbon. No significant effect of either fertilization or tree species on the catabolic diversity of the soil microbial community in both glasshouse pot trials was observed. The results demonstrated the effects that fertilization and tree species can have. Particularly notable was the short-time period in which tree species effects became apparent coupled with the absence of any aboveground inputs to the soil.
2

Seagrasses and their epiphytes : Characterization of abundance and productivity in tropical seagrass beds

Uku, Jacqueline January 2005 (has links)
<p>Seagrass beds cover large intertidal and subtidal areas in coastal zones around the world and they are subjected to a wide variety of anthropogenic influences, such as nutrient enrichment due to sewage seepage. This study was undertaken to address specific questions focusing on whether near shore tropical seagrasses that receive a constant influx of groundwater nutrient inputs, would exhibit a higher productivity and to what extent epiphytic algae reflect the impacts of nutrient inputs. An additional aspect of study was to determine the prevalence of “acid zones” in tropical seagrasses. The productivity of the seagrasses <i>Cymodocea rotundata</i>,<i> Thalassia hemprichii</i> and <i>Thalassodendron ciliatum</i> was compared in two sites along the Kenyan coast; Nyali (a high nutrient site) and Vipingo (a low nutrient site). Of the three seagrasses <i>T. hemprichii</i> showed the most distinct differences with higher growth and biomass in the nutrient rich site whereas the growth of <i>C. rotundata</i> was similar in the two sites. A high epiphytic cover was found on the shoots of <i>T. ciliatum</i> found in the high nutrient site Nyali.</p><p>Morphological and genetic characterization of bacterial and cyanobacterial epiphytes showed specific associations of nitrogen fixing cyanobacteria on the seagrass <i>C. rotundata</i> in the low nutrient site (Vipingo). At this site, shoots of <i>C. rotundata</i> had a higher C:N ratio compared to shoots in the high nutrient site (Nyali) indicating that the association with nitrogen fixing cyanobacteria is a strategy, for this species, to meet its nutrient needs. Bacterial epiphytes belonging to the group Cytophaga-Flavobacteria-Bacteroides (CFB) were found on <i>T. ciliatum</i> and <i>T. hemprichii</i> from the two sites. CFB bacteria are characteristic of waste water, particularly from livestock farming areas, thereby confirming seepage of groundwater from surrounding catchment areas. These prokaryotic associations were specific for the different seagrasses and it appears that the establishment of epiphytic associations may not be a random encounter but a specific association that meets specific needs.</p><p>The seagrass <i>T. ciliatum</i> in the high nutrient site had an abundance of macroalgal epiphytes and the impact of the epiphytic coverage was assessed using Pulse Amplitude Modulated (PAM) fluorometry. The photosynthetic activity of seagrass parts that were covered by epiphytes was suppressed but the productivity of the whole shoot was not significantly reduced. In the nutrient rich site, epiphytes were found to contribute up to 45% of the total estimated gross productivity, during the SE monsoon season, while epiphytic contribution in the nutrient poor site, was 8%. Epiphytic abundance and contribution to productivity decreased during the NE monsoon. The photosynthetic activity of <i>T. ciliatum</i> shoots was similar in the two study sites with shoots in the nutrient rich site growing faster. <i>T. ciliatum</i>, in the low nutrient site, invested in the development of below ground root tissue which may indicate the development of a strategy to gain access to pore water nutrient pools.</p><p>Carbon uptake strategies of eight tropical seagrasses were re-evaluated to determine how common the “acid zone” mechanism is among tropical seagrasses. Six of the eight species studied showed photosynthetic inorganic carbon (Ci) acquisition based on carbonic anhydrase catalysed HCO<sub>3</sub><sup>-</sup> to CO<sub>2</sub> conversions within an acidified diffusion boundary layer (“acid zone”). <i>Cymodocea serrulat</i>a appeared to maintain its carbon uptake by extracellular carbonic anhydrase catalysed CO<sub>2 </sub>formation from HCO<sub>3</sub><sup>-</sup> without the need for acidic zones, whereas, <i>Halophila ovalis</i> appeared to have a system in which H<sup>+</sup> extrusion may be followed by HCO<sub>3</sub><sup>-</sup>-H<sup>+</sup> co-transport into the cells. These findings indicate that competition for carbon, between the host seagrass species and epiphytes, could determine seagrass-epiphyte associations.</p>
3

Seagrasses and their epiphytes : Characterization of abundance and productivity in tropical seagrass beds

Uku, Jacqueline January 2005 (has links)
Seagrass beds cover large intertidal and subtidal areas in coastal zones around the world and they are subjected to a wide variety of anthropogenic influences, such as nutrient enrichment due to sewage seepage. This study was undertaken to address specific questions focusing on whether near shore tropical seagrasses that receive a constant influx of groundwater nutrient inputs, would exhibit a higher productivity and to what extent epiphytic algae reflect the impacts of nutrient inputs. An additional aspect of study was to determine the prevalence of “acid zones” in tropical seagrasses. The productivity of the seagrasses Cymodocea rotundata, Thalassia hemprichii and Thalassodendron ciliatum was compared in two sites along the Kenyan coast; Nyali (a high nutrient site) and Vipingo (a low nutrient site). Of the three seagrasses T. hemprichii showed the most distinct differences with higher growth and biomass in the nutrient rich site whereas the growth of C. rotundata was similar in the two sites. A high epiphytic cover was found on the shoots of T. ciliatum found in the high nutrient site Nyali. Morphological and genetic characterization of bacterial and cyanobacterial epiphytes showed specific associations of nitrogen fixing cyanobacteria on the seagrass C. rotundata in the low nutrient site (Vipingo). At this site, shoots of C. rotundata had a higher C:N ratio compared to shoots in the high nutrient site (Nyali) indicating that the association with nitrogen fixing cyanobacteria is a strategy, for this species, to meet its nutrient needs. Bacterial epiphytes belonging to the group Cytophaga-Flavobacteria-Bacteroides (CFB) were found on T. ciliatum and T. hemprichii from the two sites. CFB bacteria are characteristic of waste water, particularly from livestock farming areas, thereby confirming seepage of groundwater from surrounding catchment areas. These prokaryotic associations were specific for the different seagrasses and it appears that the establishment of epiphytic associations may not be a random encounter but a specific association that meets specific needs. The seagrass T. ciliatum in the high nutrient site had an abundance of macroalgal epiphytes and the impact of the epiphytic coverage was assessed using Pulse Amplitude Modulated (PAM) fluorometry. The photosynthetic activity of seagrass parts that were covered by epiphytes was suppressed but the productivity of the whole shoot was not significantly reduced. In the nutrient rich site, epiphytes were found to contribute up to 45% of the total estimated gross productivity, during the SE monsoon season, while epiphytic contribution in the nutrient poor site, was 8%. Epiphytic abundance and contribution to productivity decreased during the NE monsoon. The photosynthetic activity of T. ciliatum shoots was similar in the two study sites with shoots in the nutrient rich site growing faster. T. ciliatum, in the low nutrient site, invested in the development of below ground root tissue which may indicate the development of a strategy to gain access to pore water nutrient pools. Carbon uptake strategies of eight tropical seagrasses were re-evaluated to determine how common the “acid zone” mechanism is among tropical seagrasses. Six of the eight species studied showed photosynthetic inorganic carbon (Ci) acquisition based on carbonic anhydrase catalysed HCO3- to CO2 conversions within an acidified diffusion boundary layer (“acid zone”). Cymodocea serrulata appeared to maintain its carbon uptake by extracellular carbonic anhydrase catalysed CO2 formation from HCO3- without the need for acidic zones, whereas, Halophila ovalis appeared to have a system in which H+ extrusion may be followed by HCO3--H+ co-transport into the cells. These findings indicate that competition for carbon, between the host seagrass species and epiphytes, could determine seagrass-epiphyte associations.
4

Bacterioplankton in the Baltic Sea : influence of allochthonous organic matter and salinity

Figueroa, Daniela January 2016 (has links)
Climate change is expected to increase the precipitation ~30% in higher latitudes during the next century, increasing the land runoff via rivers to aquatic ecosystems. The Baltic Sea will receive higher river discharges, accompanied by larger input of allochthonous dissolved organic matter (DOM) from terrestrial ecosystems. The salinity will decrease due to freshwater dilution. The allochthonous DOM constitute a potential growth substrate for microscopic bacterioplankton and phytoplankton, which together make up the basal trophic level in the sea. The aim of my thesis is to elucidate the bacterial processing of allochthonous DOM and to evaluate possible consequences of increased runoff on the basal level of the food web in the Baltic Sea. I performed field studies, microcosm experiments and a theoretical modeling study. Results from the field studies showed that allochthonous DOM input via river load promotes the heterotrophic bacterial production and influences the bacterial community composition in the northern Baltic Sea. In a northerly estuary ~60% of bacterial production was estimated to be sustained by terrestrial sources, and allochthonous DOM was a strong structuring factor for the bacterial community composition. Network analysis showed that during spring the diversity and the interactions between the bacteria were relatively low, while later during summer other environmental factors regulate the community, allowing a higher diversity and more interactions between different bacterial groups. The influence of the river inflow on the bacterial community allowed “generalists” bacteria to be more abundant than “specialists” bacteria.    Results from a transplantation experiment, where bacteria were transplanted from the northern Baltic Sea to the seawater from the southern Baltic Sea and vice versa, showed that salinity, as well as the DOM composition affect the bacterial community composition and their enzymatic activity. The results showed that α-proteobacteria in general were favoured by high salinity, β-proteobacteria by low salinity and terrestrial DOM compounds and γ-proteobacteria by the enclosure itself. However, effects on the community composition and enzymatic activity were not consistent when the bacterial community was retransplanted, indicating a functional redundancy of the bacterial communities.  Results of ecosystem modeling showed that climate change is likely to have quite different effect on the north and the south of the Baltic Sea. In the south, higher temperature and internal nutrient load will increase the cyanobacterial blooms and expand the anoxic or suboxic areas. In the north, climate induced increase in riverine inputs of allochthonous DOM is likely to promote bacterioplankton production, while phytoplankton primary production will be hampered due to increased light attenuation in the water. This, in turn, can decrease the production at higher trophic levels, since bacteria-based food webs in general are less efficient than food webs based on phytoplankton. However, complex environmental influences on the bacterial community structure and the large redundancy of metabolic functions limit the possibility of predicting how the bacterial community composition will change under climate change disturbances.

Page generated in 0.1193 seconds