Spelling suggestions: "subject:"carbondioxide"" "subject:"carbonvdioxide""
381 |
Growth and physiological responses of Sitanion hystrix, Artemisia tridentata ssp. wyomingensis, and Stipa thurberiana to elevated CO��� : interactions with soil temperature and water stressLucash, Melissa S. 14 June 1996 (has links)
Since plants utilize CO��� as the substrate for photosynthesis, terrestrial plants
may be directly affected by increasing levels of CO��� in the atmosphere. Plants native to
the sagebrush steppe are predicted to increase in growth in response to elevated CO���
through increased water use efficiency and higher photosynthetic rates. This study
examined the interactions between edaphic factors and CO��� in order to determine how
species native to the sagebrush steppe may respond to elevated CO���.
The objectives of these experiments were to:
1. determine if Sitanion hystrix, Artemisia tridentata ssp. wyomingensis, and Stipa
thurberiana alter their growth and physiology in response to CO��� and soil temperature.
2. determine if Sitanion hystrix and Artemisia tridentata ssp. wyomingensis alter their
growth and physiology in response to CO��� and water stress.
Two experiments were conducted using environmentally controlled chambers.
In the first experiment, Sitanion hystrix, Artemisia tridentata and Stipa thurberiana
were exposed to ambient (374 ppm) or high (567 ppm) CO��� conditions and low (13��C)
or high (18��C) soil temperature. After four months in the chambers, plants were
harvested and plant material was divided into shoots, roots, and leaves.
Results from the first experiment demonstrated that carbon dioxide and soil
temperature modified the growth of these species. Sitanion hystrix increased its shoot
and root weights at elevated CO��� when grown under low soil temperatures. Artemisia
tridentata had lower plant weights under elevated CO��� and 18 ��C soil temperature than
plants grown at ambient CO��� and 13��C. Shoots of Stipa thurberiana were responsive
to soil temperature and roots were responsive to CO��� at 18��C.
In the second experiment, Sitanion hystrix and Artemisia tridentata were exposed to ambient (371 ppm) or high (569 ppm) CO��� and well-watered or water stressed conditions. Results indicated that there were no interactive effects betweeen CO��� and water stress with respect to plant growth or physiology. CO��� increased water use efficiency in S. hystrix and increased water use efficiency of A. tridentata at the beginning of the experiment but had no interactive effects with water stress on growth or photosynthesis.
Results suggested that the effect of CO��� on plant growth and productivity of the sagebrush steppe is dependent upon the soil temperature to which the plants are exposed. Differences between species in their response to CO���, soil temperature, and water stress were also apparent in this experiment.
These controlled environment studies should pave the way for field studies in the sagebrush steppe in order to determine if differences in carbon allocation, resulting from changes in CO��� and soil temperature, are realized in the field. Alterations in carbon allocation may potentially alter the competitive relationships between species and influence successional processes in the sagebrush steppe. / Graduation date: 1997
|
382 |
Growing season carbon dioxide exchange of two contrasting peatland ecosystemsGlenn, Aaron James, University of Lethbridge. Faculty of Arts and Science January 2005 (has links)
The CO2 flux of two peatlands in northern Alberta was examind during the 2004 growing season using eddy covariance measurements of net ecosystem exchange (NEE), chamber measurements of total ecosystem respiration, and empirical models driven by meteorological inputs. The two ecosystems, a poor fen and an extreme-rich fen, differed significantly in plant species composition, leaf area index, aboveground biomass and surface water chemistry. The mean diurnal pattern of NEE at the peak of the season was similar between the sites, however, the extreme-rich fen had a higher photosynthetic and respiratory capacity than the poor fen. Over the 6 month study, the poor fen was shown to accumulate between 2 to 3 times more carbon than the extreme-rich fen despite having a lower photosynthetic capacity. The evergreen nature of the poor fen site allowed for a longer season of net CO2 uptake than the deciduous species that dominated the extreme-rich fen. / xii, 126 leaves : ill. (some col.) ; 29 cm.
|
383 |
Carbon neutrality by 2020 The Evergreen State College's comprehensive greenhouse gas inventory /Pumilio, John F. January 2007 (has links) (PDF)
Thesis (M.E.S.)--The Evergreen State College, 2007. / Title from title screen viewed 1/17/2008. Includes bibliographical references (p. 123-126).
|
384 |
Effects of Ocean Circulation on Ocean Anthropogenic Carbon UptakeRidge, Sean January 2020 (has links)
The ocean is the only cumulative sink of atmospheric CO2. It has absorbed approximately 40% of the CO2 from fossil fuel burning and cement production, lowering atmospheric CO2 and limiting climate change. Here we will examine the regional and global mechanisms controlling the evolution of ocean uptake of this additional carbon from human activities (anthropogenic carbon, Cant) using ocean models and observations. Cant is rapidly injected into the deep ocean, sequestering it from the atmosphere for centuries. It is currently uncertain whether any of this sequestered Cant was absorbed from the atmosphere in the subpolar North Atlantic. Here we present evidence that the upper limb of the ocean’s overturning circulation supplies the subpolar North Atlantic with capacity to absorb Cant from the atmosphere. Using a coupled ocean model, we find that surface freshening of the subpolar North Atlantic reduces the volume available for Cant storage. We also investigate whether global ocean Cant uptake is reduced due to changing ocean circulation, this time across multiple emission scenarios, including scenarios with aggressive emission mitigation. Though it is clear that emission mitigation will reduce the magnitude of the ocean carbon sink, the mechanisms governing the decline in uptake have not been studied in detail. We find that the ocean sink becomes less efficient due to kinematic effects wherein Cant escapes from the surface ocean as atmospheric CO2 plateaus and then declines. In emission scenarios ranging from high to low emissions, projected changes in global Cant uptake due to ocean circulation are small. This is in contrast with the subpolar North Atlantic, where future circulation change plays a important role in the declining Cant uptake.
|
385 |
Nanoparticle-stabilized supercritical CO₂ foam for mobility control in CO₂ enhanced oil recoveryAroonsri, Archawin 10 October 2014 (has links)
Foam has been used as a mobility control technique in CO₂ flooding to improve volumetric sweep efficiency. Stabilizing CO₂ foam with nanoparticle instead of surfactant has some notable advantages. Nanoparticle-stabilized foam is very stable because a large adsorption energy is required to bring nanoparticles to the bubble interfaces. As a solid, nanoparticle can potentially withstand the high temperature in the reservoir, providing a robust foam stability for an extended period of time. The ability of nanoparticles to generate foam only above a threshold shear rate is promising as foam can be engineered to form only in the high permeability zone. These nanoparticles are hundreds of times smaller than pore throats and thus can travel in the reservoir without plugging the pore throats. Surface-modified silica nanoparticle was found to stabilize CO₂ -in-water foam at temperature up to 80 ˚C and salinity as high as 7.2 wt%. The foam was generated through the co-injection of aqueous nanoparticle dispersion and CO₂ into consolidated rock cores, primarily sandstones, with and without an induced fracture in the core. A critical shear rate for foam generation was found to exist in both matrix and fracture, however, this critical rate varied with the experiment conditions. The effects of experimental parameters on the critical shear rate and foam apparent viscosity were also investigated. Additionally, the flow distribution calculation in fractured sandstone cores revealed a diversion of flow from fracture toward matrix once foam was generated, suggesting conformance control potential in fractured reservoirs. In order to study foam rheology, high-permeability beadpack was installed upstream of the core to serve as a foam generator. This allows the foam mobility to be measured solely while being transported through the core, without the complicating effect of transient foam generation in the core. The injection of the pre-generated foam into the core at residual oil condition was found to reduce the residual oil saturation to the same level as CO₂ flood, however, with the advantage of mobility control. The 'coalescence-regeneration' mechanism of foam transport in porous media possibly allowed the foam's CO₂ to contact and mobilize the residual oil. The injection of the foam slug followed by a slug of only CO₂ was also tested, showing similar viscosification as the continuous foam injection, however, required less nanoparticles. / text
|
386 |
Biochar amendment and greenhouse gas emissions from agricultural soilsCase, Sean Daniel Charles January 2013 (has links)
The aim of this study was to investigate the effects of biochar amendment on soil greenhouse gas (GHG) emissions and to elucidate the mechanisms behind these effects. I investigated the suppression of soil carbon dioxide (CO2) and nitrous oxide (N2O) emissions in a bioenergy and arable crop soil, at a range of temperatures and with or without wetting/drying cycles. More detailed investigation on the underlying mechanisms focused on soil N2O emissions. I tested how biochar altered soil physico-chemical properties and the subsequent effects on soil N2O emissions. In addition, 15N pool dilution techniques were used to investigate the effect of biochar on soil N transformations. Biochar amendment significantly suppressed soil GHG emissions for two years within a bioenergy soil in the field and for several months in an arable soil. I hypothesised that soil CO2 emissions were suppressed under field conditions by a combination of mechanisms: biochar induced immobilisation of soil inorganic-N (BII), increased C-use efficiency, reduced C-mineralising enzyme activity and adsorption of CO2 to the biochar surface. Soil CO2 emissions were increased for two days following wetting soil due to the remobilisation of biochar-derived labile C within the soil. Soil N2O emissions were suppressed in laboratory incubations within several months of biochar addition due to increased soil aeration, BII or increased soil pH that reduced the soil N2O: N2 ratio; effects that varied depending on soil inorganic-N concentration and moisture content. These results are significant as they consistently demonstrate that fresh hardwood biochar has the potential to reduce soil GHG emissions over a period of up to two years in bioenergy crop soil, while simultaneously sequestering C within the soil. They also contribute greatly to understanding of the mechanisms underlying the effect of biochar addition on soil N transformations and N2O emissions within bioenergy and arable soils. This study supports the hypothesis that if scaled up, biochar amendment to soil may contribute to significant reductions in global GHG emissions, contributing to climate change mitigation. Further studies are needed to ensure that these conclusions can be extrapolated over the longer term to other field sites, using other types of biochar.
|
387 |
COHERENT OPTICAL TRANSIENT STUDIES USING FREQUENCY SWITCHING AND USING ARP EXCITATION.COMASKEY, BRIAN JOHN. January 1982 (has links)
Two different time-resolved spectroscopic techniques are discussed theoretically and demonstrated experimentally in dilute gases. The first technique involves extending the advantages of Stark-effect based time-resolved spectroscopy to non-polar molecules. This involves the development of a stable, TEM₀₀ mode, cw, CO₂ laser capable of switching rapidly and controllably between two frequencies. Design problems and output characteristics are discussed. The frequency switchable laser is applied to the CO₂ 10.6 μm P(16) coincidence with the non-polar molecule SF₆. The population relaxation time, T₁, is measured using two-pulse delayed nutation. The decay of induced dipoles is studied using the phenomenon of photon echoes. It is found that the echoes decay in a manner characteristic of dephasing dominated by velocity-changing collisions. A fit of the data to a model for such decays gives values of γ(ab) ≡ 1/T₂ (the non-velocity-changing contribution to the dipole decay rate), Γ(VC) (the total probability of a velocity-changing collision per unit time), and Δu which is related to the mean velocity change of SF₆ upon a velocity changing collision. A comparison with the published results of the similar Stark experiments on C¹³ H₃F are made. The second technique involves the development of an alternative to the pulsed excitation typically used in time-resolved T₁ studies. This involves inversion of a portion of the velocity distribution by adiabatic rapid passage (ARP) techniques. The center of this portion is then probed in the manner of previous delayed nutation experiments. The system preparation is shown theoretically to be different and simpler than the pulse case. In addition, ARP preparation gives a larger signal than two-pulse delayed nutation experiments. ARP experiments on N¹⁴H₃ and N¹⁵H₃ are described and compared to two-pulse delayed notation experiments. The single exponential decay best fits to the data from the two methods are found to be in agreement. We would expect the N¹⁵H₃ results to be very similar to the N¹⁴H₃ results, though reduced rotational resonance effects in its upper state should give it an overall slower decay. It is indeed found that the decay appears to be a simple exponential as did the N¹⁴H₃ data over the time range studied. The pressure dependent single exponential decay rate for N¹⁵H₃ is however roughly 45% larger than the rate for N¹⁴H₃ in the pressure range from 0.5 to 9 mTorr.
|
388 |
INFERENCE OF PAST ATMOSPHERIC DELTA CARBON-13 AND ATMOSPHERIC CARBON-DIOXIDE FROM CARBON-13/CARBON-12 MEASUREMENTS IN TREE RINGS.LEAVITT, STEVEN WARREN. January 1982 (has links)
Carbon dioxide release from fossil-fuel burning is significant enough that we may soon experience perceptible changes in climate with important human consequences. Man's activities involving deforestation and agriculture have undoubtedly also affected atmospheric CO₂, although quantitative, and even qualitative, net effects of these processes are incompletely understood relative to fossil-fuel production. An accurate reconstruction of past ¹³C/¹²C ratios of atmospheric CO₂ may provide key constraints on the historical activity of the biosphere as CO₂ source or sink. Tree rings appear to be a repository of this information but there is much noise in the collection of previous reconstructions, presumably associated with site selection, radial variability, choice of representative wood chemical constituent, and subtle effects of climate on fractionation. This study attempts to avoid these pitfalls and develop a 50-yr δ¹³C(ATM) record from juniper trees (genus Juniperus), in fact, by taking advantage of the influence of climate on fractionation. Trees were harvested from suitable sites in close proximity to weather stations with monthly records of temperature and precipitation. Ring material was then separated from each of the sections in 5-yr intervals from 1930 to 1979 around their full circumference, and cellulose was extracted from the wood. After measuring δ¹³C of the cellulose by standard mass-spectrometric techniques, a variety of δ¹³C vs. climate functions were examined for each interval. The most useful relationships for at most 7 of the 10 sites were δ¹³C with December temperature or precipitation, because the coefficients were nearly constant from one interval to the next (averaging -0.27%₀ °C⁻¹ for temperature and -0.04%₀ mm⁻¹ for precipitation) and the intercepts differed. Local pollution effects are believed responsible for the three anomalous sites. The separation of these regression lines of different intervals is interpreted as the response of the trees to the changing δ¹³C of atmospheric CO₂ so that δ¹³C(ATM) curves are constructed from this spacing. The shape of the best-fit reconstruction suggests the biosphere has acted as CO₂ source to about 1965 and may now be a net sink. Although these conclusions are limited by certain assumptions and statistical restrictions, evidence from the recent scientific literature tends to support the increasing role of the biosphere as an important carbon sink.
|
389 |
Activation and Capture of Carbon Dioxide and Carbon Disulfide by N-Containing CompoundsAng, Mary Trisha Cabacungan 04 December 2013 (has links)
The interaction between carbon dioxide (CO2) and N-compounds such as 1,8-diazobicyclo[5.4.0]undec-7-ene (DBU) has been extensively studied in the Jessop Lab. Carbon disulfide (CS2) is the sulfur congener of CO2, although it exhibits different reactivity with N-containing compounds. This thesis presents the search for zwitterionic CO2-switchable polarity solvents, new and general reactivity of CS2 with amidines and guanidines, and attempts at using CO2 as a carbonyl source in the synthesis of nitrogen containing compounds.
In the second chapter, the reactions of CO2 with various diamines are described. Spectroscopic methods and X-ray crystallography determined the structure of a solid zwitterionic carbamate salt of CO2 and N,N’-dimethyl-1,3-propanediamine. The polarity of the liquid zwitterionic carbamate salt formed with N,N,N’-trimethyl-1,3-propanediamine was measured using UV-Vis and the solvatochromic dye Nile red; its polarity was comparable to previous switchable polarity systems. The CO2 gravimetric uptake of the liquid zwitterionic carbamate salt was 28%, far greater than other solvents for the capture and release of CO2.
In the third chapter, it was found that a variety of products can be accessed depending on the structure of the N-base (cyclic or acyclic) upon reaction of the base with CS2 at room temperature. The reaction of CS2 with cyclic amidines produced a cyclic trithioanhydride structure, forming a new C-C bond at a sp2-carbon beta to the imino nitrogen centre. When an amidine was acyclic it led to cleavage and formation of isothiocyanates in near quantitative yields. When a N-base had a N-H bond, CS2 can insert, forming a dimer in the presence of dichloromethane.
In the fourth chapter, preliminary investigations are ascribed for synthesis of α-amino acids, amides, and ureas. Carboxylation of ketimines was detected, although the formed carboxylates from a variety of ketimines readily decomposed. Isomerization products of two ketimines were generated with DBU and CO2. Lewis acid catalysts were implemented towards the amidation of benzoylacetic acid and synthesis of ureas. Amidation of benzoylacetic acid did not occur in the presence of Lewis acid catalysts and CO2. Formation of a cyclic tetraalkylurea was afforded in low yields by the use of a diamine, CO2 and Lewis acid catalysts. / Thesis (Ph.D, Chemistry) -- Queen's University, 2013-12-01 19:16:55.257
|
390 |
Carbon dioxide capture methods for industrial sources.Osman, Khalid. January 2010 (has links)
In order to reduce the rate of climate change, particularly global warming, it is imperative that
industries reduce their carbon dioxide (CO2) emissions.
A promising solution of CO2 emission reduction is Carbon dioxide Capture and Storage (CCS)
by sequestration, which involves isolating and extracting CO2 from the flue gases of various
industrial processes, and thereafter burying the CO2 underground.
The capture of CO2 proved to be the most challenging aspect of CCS. Thus, the objective of this
research was to identify the most promising solution to capture CO2 from industrial processes.
The study focussed on capturing CO2 emitted by coal power plants, coal-to-liquids (CTL) and
gas-to-liquids (GTL) industries, which are common CO2 emitters in South Africa.
This thesis consists firstly of an extensive literature review detailing the above mentioned
processes, the modes of CO2 capture, and the various CO2 capture methods that are currently
being investigated around the world, together with their benefits and drawbacks in terms of
energy penalty, CO2 loading, absorption rate, capture efficiency, investment costs, and operating
costs. Modelling, simulation, and pilot plant efforts are also described.
The study reviewed many CO2 capture techniques including solvent absorption, sorbent capture,
membrane usage, hydrate formation, and newly emerging capture techniques such as enzyme
based systems, ionic liquids, low temperature cryogenics, CO2 anti-sublimation, artificial
photosynthesis, integrated gasification steam cycle (IGSC), and chemical looping combustion
The technique of solvent absorption was found to be the most promising for South African
industries. Vapour-liquid-equilibrium (VLE) measurements of solvent absorption using amine
blends were undertaken, using blends of methyl-diethanol amine (MDEA), diethanol amine
(DEA) and water (H2O) with composition ratios of 25: 25: 50 wt% and 30: 20: 50 wt%
respectively, and with CO2 and N2 gases at CO2 partial pressures of 0.5 to 10.5 bar. Experiments
were conducted under system pressures of 5 to 15 bar and temperatures of 363.15 and 413.15 K,
using a static analytic apparatus. CO2 liquid loading results were analysed and discussed.
The experimental data were regressed in Matlab (R2009b) using the Posey-Tapperson-Rochelle
model and the Deshmukh-Mather model. The Matlab programmes are presented along with the
regressed binary interaction and model parameters. The accuracy of model predictions are
discussed.
Thereafter an Electrolyte-NRTL model regression and simulation of the absorption process was
conducted using Aspen Plus V 7.1. for flue gas compositions, solvent compositions,
temperature, and pressure conditions similar to that of process operating conditions. CO2
loading, design factors, CO2 recovery, and CO2 purity results were analysed and compared where appropriate, with experimental results. Finally a general preliminary energy efficiency
and cost analysis was conducted based on the simulation results.
The main conclusions reached are that the amine solvent blend containing 25:25:50 wt% of
MDEA:DEA:H2O, produced higher CO2 loadings for its respective system conditions than other
solvents studied and those found in literature. However, absorption of CO2 was found to be
highly dependent on system temperature and pressure.
The Deshmukh-Mather model provided higher accuracy than the Posey-Tapperson-Rochelle
model, producing CO2 loading predictions with a relative error not exceeding 0.04%, in 1.5 to 3
minutes using a dual core processor.
Aspen absorption simulations provided significantly lower CO2 loading results than those
experimentally obtained, due to the low contact time achieved and higher temperature
dependence in the proposed absorption process. Process improvements were highlighted and
implemented to increase CO2 recovery and purity. Energy penalty values were found to be
higher than those found in literature, but room for process and design improvement was
identified and recommendations were given. Investment cost estimates were found to be
justifiable and within reason. Limitations of the simulation were also identified and discussed. / Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, Durban, 2010.
|
Page generated in 0.0556 seconds