1 |
Characterization and Pharmacokinetics of Rifampicin Laden Carboxymethylcellulose Acetate Butyrate ParticlesCasterlow, Samantha Alexandra 07 June 2012 (has links)
Tuberculosis, caused by Mycobacterium tuberculosis (MTB), is a common and potentially lethal infectious human disease. Rifampicin is a front line anti-tuberculosis drug usually prescribed in combination with isoniazid, pyrazinamide and streptomycin for a period of six to seven months. When given orally for the treatment of MTB, rifampicin exhibits low bioavailability. Recent attempts to increase bioavailability and decrease dosage of anti-tuberculosis drugs have focused on creating polymer coated rifampicin nanoparticles. The research effort presented in this thesis evaluates the formation, characterization and relative bioavailability of rifampicin loaded carboxymethylcellulose acetate butyrate (CMCAB) particles using two different formulation techniques. Multi inlet vortex mixer (MIVM) and manual spray drying techniques were used to form the rifampicin containing CMCAB particles. Characterization studies and analyses of particles revealed differences in particle sizes, shapes and drug loading between the different particle formulation techniques. In vivo pharmacokinetic studies in BALB/c mice indicate that a single dose of rifampicin laden CMCAB spray dried particle formulations are able to improve pharmacokinetic parameters including relative bioavailability of rifampicin compared to that of the free drug form at the same concentration. / Master of Science
|
2 |
Carboxymethylcellulose Acetate Butyrate Water-Dispersions as Renewable Wood AdhesivesParis, Jesse Loren 09 September 2010 (has links)
Two commercial carboxymethylcellulose acetate butyrate (CMCAB) polymers, high and low molecular weight (MW) forms, were analyzed in this study. High-solids water-borne dispersions of these polymers were studied as renewable wood adhesives. Neat polymer analyses revealed that the apart from MW, the CMCAB systems had different acid values, and that the high MW system was compromised with gel particle contaminants. Formulation of the polymer into water-dispersions was optimized for this study, and proved the "direct method", in which all formulation components were mixed at once in a sealed vessel, was the most efficient preparation technique. Applying this method, 4 high-solids water dispersions were prepared and evaluated with viscometry, differential scanning calorimetry, dynamic mechanical analysis, light and fluorescence microscopy, and mode I fracture testing.
Thermal analyses showed that the polymer glass transition temperature significantly increased when bonded to wood. CMCAB dispersions produced fairly brittle adhesive-joints; however, it is believed toughness can likely be improved with further formulation optimization. Lastly, dispersion viscosity, film formation, adhesive penetration and joint-performance were all dependent on the formulation solvents, and moreover, these properties appeared to correlate with each other. / Master of Science
|
Page generated in 0.0754 seconds