• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Over-Expression of a Modified Bifunctional Apoptosis Regulator Protects Against Cardiac Injury and Doxorubicin-Induced Cardiotoxicity in Transgenic Mice

Chua, Chu C., Gao, Jinping, Ho, Ye S., Xu, Xingshun, Kuo, I. C., Chua, Kaw Y., Wang, Hong, Hamdy, Ronald C., Reed, John C., Chua, Balvin H. 01 January 2009 (has links)
Aims: Bifunctional apoptosis regulator (BAR) is an endoplasmic reticulum protein that interacts with both the extrinsic and intrinsic apoptosis pathways. We hypothesize that over-expression of BARΔRING prevents apoptosis and injury following ischaemia/reperfusion (I/R) and attenuates doxorubicin (DOX)-induced cardiotoxicity. Methods and results: We generated a line of transgenic mice that carried a human BARΔRING transgene under the control of the mouse α-myosin heavy chain promoter. The RING domain, which binds ubiquitin conjugating enzymes, was deleted to prevent auto-ubiquitination of BAR and allow accumulation of the BAR protein, which binds apoptosis-regulating proteins. High levels of human BARΔRING transcripts and 42 KDa BARΔRING protein were expressed in the hearts of transgenic mice. When excised hearts were reperfused ex vivo for 45 min as Langendorff preparations after 45 min of global ischaemia, the functional recovery of the hearts, expressed as left ventricular developed pressure x heart rate, was 23 ± 1.7% in the non-transgenic hearts compared with 51.5 ± 4.3% in the transgenic hearts (P < 0.05). For in vivo studies, mice were subjected to 50 min of ligation of the left descending anterior coronary artery followed by 4 h of reperfusion. The infarct sizes following I/R injury, expressed as the percentage of the area at risk, were significantly smaller in the transgenic mice than in the non-transgenic mice (29 ± 4 vs. 55 ± 4%, P < 0.05). In hearts of mice subjected to cardiac I/R injury, BAR transgenic hearts had significantly fewer in situ oligo-ligation-positive cardiac cells (5.0 ± 0.4 vs. 13.4 ± 0.5%, P < 0.05). Over-expression of BARΔRING also significantly attenuated DOX-induced cardiac dysfunction and apoptosis. Conclusion: Our results demonstrate that over-expression of BARΔRING renders the heart more resistant to I/R injury and DOX-induced cardiotoxicity, and this protection correlates with reduced cardiomyocyte apoptosis.

Page generated in 0.0641 seconds