• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 11
  • 9
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interactions Within the Intrinsic Cardiac Nervous System Contribute to Chronotropic Regulation

Randall, David C., Brown, David R., McGuirt, A. Scott, Thompson, Gregory W., Armour, J. Andrew, Ardell, Jeffrey L. 01 January 2003 (has links)
The objective of this study was to determine how neurons within the right atrial ganglionated plexus (RAGP) and posterior atrial ganglionated plexus (PAGP) interact to modulate right atrial chronotropic, dromotropic, and inotropic function, particularly with respect to their extracardiac vagal and sympathetic efferent neuronal inputs. Surgical ablation of the PAGP (PAGPx) attenuated vagally mediated bradycardia by 26%; it reduced heart rate slowing evoked by vagal stimulation superimposed on sympathetically mediated tachycardia by 36%. RAGP ablation (RAGPx) eliminated vagally mediated bradycardia, while retaining the vagally induced suppression of sympathetic-mediated tachycardia (-83%). After combined RAGPx and PAGPx, vagal stimulation still reduced sympathetic-mediated tachycardia (-47%). After RAGPx alone and after PAGPx alone, stimulation of the vagi still produced negative dromotropic effects, although these changes were attenuated compared with the intact state. Negative dromotropic responses to vagal stimulation were further attenuated after combined ablation, but parasympathetic inhibition of atrioventricular nodal conduction was still demonstrable in most animals. Finally, neither RAGPx nor PAGPx altered autonomic regulation of right atrial inotropic function. These data indicate that multiple aggregates of neurons within the intrinsic cardiac nervous system are involved in sinoatrial nodal regulation. Whereas parasympathetic efferent neurons regulating the right atrium, including the sinoatrial node, are primarily located within the RAGP, prejunctional parasympathetic-sympathetic interactions regulating right atrial function also involve neurons within the PAGP.
2

Distribution and Morphology of Calcitonin Gene-Related Peptide and Substance P Immunoreactive Axons in the Whole-Mount Atria of Mice

Li, Liang, Hatcher, Jeffrey T., Hoover, Donald B., Gu, He, Wurster, Robert D., Cheng, Zixi Jack 14 January 2014 (has links)
The murine model has been used to investigate the role of cardiac sensory axons in various disease states. However, the distribution and morphological structures of cardiac nociceptive axons in normal murine tissues have not yet been well characterized. In this study, whole-mount atria from FVB mice were processed with calcitonin gene-related peptide (CGRP) and substance P (SP) primary antibodies followed by secondary antibodies, and then examined using confocal microscopy. We found: 1) Large CGRP-IR axon bundles entered the atria with the major veins, and these large bundles bifurcated into small bundles and single axons that formed terminal end-nets and free endings in the epicardium. Varicose CGRP-IR axons had close contacts with muscle fibers, and some CGRP-IR axons formed varicosities around principle neurons (PNs) within intrinsic cardiac ganglia (ICGs). 2) SP-IR axons also were found in the same regions of the atria, attached to veins, and within cardiac ganglia. Similar to CGRP-IR axons, these SP-IR axons formed terminal end-nets and free endings in the atrial epicardium and myocardium. Within ICGs, SP-IR axons formed varicose endings around PNs. However, SP-IR nerve fibers were less abundant than CGRP-IR fibers in the atria. 3) None of the PNs were CGRP-IR or SP-IR. 4) CGRP-IR and SP-IR often colocalized in terminal varicosities around PNs. Collectively, our data document the distribution pattern and morphology of CGRP-IR and SP-IR axons and terminals in different regions of the atria. This knowledge provides useful information for CGRP-IR and SP-IR axons that can be referred to in future studies of pathological remodeling.
3

Impairment of Baroreflex Control of Heart Rate and Structural Changes of Cardiac Ganglia in Conscious Streptozotocin (STZ)-Induced Diabetic Mice

Lin, Min, Ai, Jing, Harden, Scott W., Huang, Chenghui, Li, Lihua, Wurster, Robert D., Cheng, Zixi (Jack) 24 June 2010 (has links)
Baroreflex control of heart rate (HR) is impaired in human diabetes mellitus and in large experimental models. However, baroreflex impairment in diabetic mouse models and diabetes-induced remodeling of baroreflex circuitry are not well studied. We examined the impairment of baroreflex control of heart rate (HR) and assessed structural remodeling of cardiac ganglia in the streptozotocin (STZ)-induced diabetic mouse model. FVB mice were either injected with vehicle or STZ. Group 1: mice were anesthetized and the femoral artery and vein were catheterized at the 30th day after vehicle or STZ injection. On the second day after surgery, baroreflex-mediated HR responses to sodium nitroprusside (SNP) and phenylephrine (PE)-induced mean arterial blood pressure (MABP) changes were measured in conscious mice. Group 2: Fluoro-Gold was administered (i.p.) to label cardiac ganglia in each mouse at the 25th day after vehicle or STZ injection. After another five days, animals were perfused and cardiac ganglia were examined using confocal microscopy. Compared with control, we found in STZ mice: 1) the HR decreased, but MABP did not. 2) The PE-induced increases of MABP were decreased. 3) Baroreflex bradycardia was attenuated in the rapid MABP ascending phase but the steady-state ΔHR/ΔMABP was not different at all PE doses. 4) SNP-induced MABP decreases were not different. 5) Baroreflex tachycardia was attenuated. 6) The sizes of cardiac ganglia and ganglionic principal neurons were decreased. 7) The ratio of nucleus/cell body of cardiac ganglionic neurons was increased. We conclude that baroreflex control of HR is impaired in conscious STZ mice. In addition, diabetes may induce a significant structural remodeling of cardiac ganglia. Such an anatomical change of cardiac ganglia may provide new information for the understanding of diabetes-induced remodeling of the multiple components within the baroreflex circuitry.
4

Impairment of Baroreflex Control of Heart Rate in Conscious Transgenic Mice of Type 1 Diabetes (OVE26)

Lin, Min, Harden, Scott W., Li, Lihua, Wurster, Robert D., Cheng, Zixi J. 15 January 2010 (has links)
Baroreflex control of heart rate (HR) is impaired in human type 1 diabetes mellitus. The goal of this study is to use a transgenic mouse model of type 1 diabetes (OVE26) to assess the diabetes-induced baroreflex impairment in the conscious state. OVE26 transgenic mice (which develop hyperglycemia within the first three weeks after birth due to the specific damage of beta cells) and normal control mice (FVB) 5-6 months of age were anesthetized, and the left femoral artery and both veins were catheterized. On the second day after surgery, baroreflex-mediated HR responses to arterial blood pressure (ABP) changes that were induced by separate microinfusion of phenylephrine (PE) and sodium nitroprusside (SNP) at different doses (0.03-0.4 μg/min) were measured in the conscious state. Compared with FVB control, we found that in OVE26 diabetic mice 1) mean ABP (MABP) and HR were decreased (p < 0.05). 2) PE-induced MABP increases were comparable to those in FVB mice (p > 0.05). 3) Baroreflex-mediated bradycardia was attenuated (p < 0.05). 4) SNP-induced MABP decreases was reduced (p < 0.05). 5) Baroreflex-mediated tachycardia was attenuated (p < 0.05). Since baroreflex control of HR in conscious OVE26 mice is impaired in a similar fashion to human diabetes mellitus, we suggest that OVE26 mice may provide a useful model to study the neural mechanisms of diabetes-induced baroreflex impairment.
5

Localization of Muscarinic Receptor mRNAs in Rat Heart and Intrinsic Cardiac Ganglia by in Situ Hybridization

Hoover, Donald B., Baisden, Ronald H., Xi-Moy, Sylvia X. 01 January 1994 (has links)
Although the heart is considered a relatively pure source of m2 muscarinic receptors, the possible expression of other muscarinic receptor genes at discrete sites within the myocardium or by intrinsic cardiac ganglia had not been evaluated. Accordingly, the present study used in situ hybridization histochemistry with 35S-labeled oligonucleotide probes to address this tissue. Initial experiments demonstrated that the localization of m2 mRNA was similar to that reported for muscarinic receptors labeled with the nonselective muscarinic antagonist quinuclidinyl benzilate; however, there were two important exceptions. The conducting system contained less message than expected, whereas the intrinsic cardiac ganglia contained more. The mismatch between muscarinic receptor and m2 mRNA densities in the conducting system could not be explained by the local expression of other muscarinic receptor genes, since m1, m3, and m4 mRNAs were not detected at this or any other site within the myocardium. However, the presence of a high density of prejunctional muscarinic receptors in the conducting system would be consistent with such a mismatch. Surprisingly, the intrinsic cardiac ganglia contained more than four times as much m2 mRNA as found in the atria. This level of message may be necessary for the production of prejunctional receptors on cholinergic nerve fibers within the heart and receptors localized to the ganglion cell bodies. The ganglia also contained smaller amounts of m1 and m4 mRNAs. These observations suggest that prejunctional muscarinic receptors could have a prominent role in regulating cholinergic neurotransmission in the conducting system and that multiple muscarinic receptors are present in the intrinsic cardiac ganglia.
6

Jūrų kiaulytės ir žmogaus širdies nervinių mazgų struktūros su amžiumi susijusių pokyčių histomorfometrinė analizė / Histomorphometric Analysis Of Structural Changes Of Guinea Pig And Human Intracardiac Ganglia In Relation To Age

Jurgaitienė, Rūta 04 July 2005 (has links)
INTRODUCTION Autonomic control of cardiac function is fundamental for the maintenance of circulatory homeostasis under changing environmental and behavioral conditions (Pardini et al., 1987). The intrinsic cardiac nervous system is principal in the maintenance of the adequate cardiac output, the power, the rate of contraction, and the volume of blood delivered to cardiac muscle thorough the coronary vasculatures (Armour and Ardell, 1994). For many years it has been thought that cardiac ganglia possess only cholinergic parasympathetic postganglionic neurons and serve as simple stations of transmission of inhibitory impulse to the heart (Mawe et al., 1996). However, recent morphological and physiological evidence indicates that the mammalian intrinsic cardiac nervous system contains afferent sensory (Ardell et al., 1991; Armour and Hopkins, 1990; Cheng et al., 1997), efferent sympathetic and parasympathetic postganglionic neurons (Horackova et al., 1996; Mawe et al., 1996; Randall et al., 1987), and a population of local circuit neurons that function to interconnect neurons within and between the separate aggregates of ganglia that form the various intrinsic cardiac ganglionated plexuses (Butler et al., 1990). These neurons might be unipolar, bipolar or multipolar in shape (Armour et al., 1997; Baptista and Kirby, 1997; Edwards et al., 1995; Xi et al., 1991) and possesses varied immunohistochemical properties (Singh et al., 1999). Functionally diverse cardiac ganglion neurons... [to full text]
7

Substance P Evokes Bradycardia by Stimulation of Postganglionic Cholinergic Neurons

Tompkins, John D., Hoover, Donald B., Hancock, John C. 01 June 1999 (has links)
Substance P (SP) evokes bradycardia that is mediated by cholinergic neurons in experiments with isolated guinea pig hearts. This project investigates the negative chronotropic action of SP in vivo. Guinea pigs were anesthetized with urethane, vagotomized and artificially respired. Using this model, IV injection of SP (32 nmol/kg/50 μl saline) caused a brief decrease in heart rate (-30 ± 3 beats/min from a baseline of 256 ± 4 beats/min, n = 27) and a long-lasting decrease in blood pressure (-28 ± 2 mmHg from baseline of 51 ± 5 mmHg, n = 27). The negative chronotropic response to SP was attenuated by muscarinic receptor blockade with atropine (-29 ± 9 beats/min before vs -8 ± 2 beats/min after treatment, P = 0.0204, n = 5) and augmented by inhibition of cholinesterases with physostigmine (-23 ± 6 beats/min before versus -74 ± 20 beats/min after treatment, P = 0.0250, n = 5). Ganglion blockade with chlorisondamine did not diminish the negative chronotropic response to SP. In another series of experiments, animals were anesthetized with sodium pentobarbital or urethane and studied with or without vagotomy. Neither anesthetic nor vagotomy had a significant effect on the negative chronotropic response to SP (F3,24 = 1.97, P = 0.2198). Comparison of responses to 640 nmol/kg nitroprusside and 32 nmol/kg SP demonstrated that the bradycardic effect of SP occurs independent of vasodilation. These results suggest that SP can evoke bradycardia in vivo through stimulation of postganglionic cholinergic neurons. Copyright (C) 1999 Elsevier Science Inc.
8

Endogenous Tachykinins Cause Bradycardia by Stimulating Cholinergic Neurons in the Isolated Guinea Pig Heart

Chang, Yingzi, Hoover, Donald B., Hancock, John C. 01 January 2000 (has links)
The purpose of this study was to determine if endogenous tachykinins can cause bradycardia in the isolated perfused guinea pig heart through stimulation of cholinergic neurons. Capsaicin was used to stimulate release of tachykinins and calcitonin gene-related peptide (CGRP) from cardiac afferents. A bolus injection of 100 nmol capsaicin increased heart rate by 26 ± 7% from a baseline of 257 ± 14 beats/min (n = 6, P < 0.01). This positive chronotropic response was converted to a minor bradycardic effect in hearts with 1 μM CGRP (8-37) present to block CGRP receptors. The negative chronotropic response to capsaicin was markedly potentiated in another group of hearts with the further addition of 0.5 μM neostigmine to inhibit cholinesterases. In this group, capsaicin decreased heart rate by 30 ± 10% from a baseline of 214 ± 6 beats/min (n = 8, P < 0.05). This large bradycardic response to capsaicin was inhibited by 1) infusion of neurokinin A to desensitize tachykinin receptors or 2) treatment with 1 μM atropine to block muscarinic receptors. The latter observations implicate tachykinins and acetylcholine, respectively, as mediators of the bradycardia. These findings support the hypothesis that endogenous tachykinins could mediate axon reflexes to stimulate cholinergic neurons of the intrinsic cardiac ganglia.
9

Development of Cardiac Parasympathetic Neurons, Glial Cells, and Regional Cholinergic Innervation of the Mouse Heart

Fregoso, S. P., Hoover, D. B. 27 September 2012 (has links)
Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous system in the heart.
10

Remodeling of Cardiac Cholinergic Innervation and Control of Heart Rate in Mice With Streptozotocin-Induced Diabetes

Mabe, Abigail M., Hoover, Donald B. 05 July 2011 (has links)
Cardiac autonomic neuropathy is a frequent complication of diabetes and often presents as impaired cholinergic regulation of heart rate. Some have assumed that diabetics have degeneration of cardiac cholinergic nerves, but basic knowledge on this topic is lacking. Accordingly, our goal was to evaluate the structure and function of cardiac cholinergic neurons and nerves in C57BL/6 mice with streptozotocin-induced diabetes. Electrocardiograms were obtained weekly from conscious control and diabetic mice for 16. weeks. Resting heart rate decreased in diabetic mice, but intrinsic heart rate was unchanged. Power spectral analysis of electrocardiograms revealed decreased high frequency and increased low frequency power in diabetic mice, suggesting a relative reduction of parasympathetic tone. Negative chronotropic responses to right vagal nerve stimulation were blunted in 16-week diabetic mice, but postjunctional sensitivity of isolated atria to muscarinic agonists was unchanged. Immunohistochemical analysis of hearts from diabetic and control mice showed no difference in abundance of cholinergic neurons, but cholinergic nerve density was increased at the sinoatrial node of diabetic mice (16. weeks: 14.9 ± 1.2% area for diabetics versus 8.9 ± 0.8% area for control, P< 0.01). We conclude that disruption of cholinergic function in diabetic mice cannot be attributed to a loss of cardiac cholinergic neurons and nerve fibers or altered cholinergic sensitivity of the atria. Instead, decreased responses to vagal stimulation might be caused by a defect of preganglionic cholinergic neurons and/or ganglionic neurotransmission. The increased density of cholinergic nerves observed at the sinoatrial node of diabetic mice might be a compensatory response.

Page generated in 0.0582 seconds