• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 50
  • 8
  • 6
  • 5
  • 4
  • 2
  • Tagged with
  • 155
  • 155
  • 44
  • 43
  • 33
  • 25
  • 22
  • 21
  • 19
  • 19
  • 19
  • 18
  • 18
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Energy metabolism in the hypertrophied newborn rabbit heart

Jesus Cadete, Virgilio Jorge 11 1900 (has links)
The newborn heart possesses a higher tolerance to ischemia in comparison to adult hearts. Post-ischemic interventions that increase energy production are beneficial for recovery. These data suggest that the newborn heart holds on a very tight energetic plasticity and may not be capable to effectively respond to increases in energetic demand. Congenital heart defects can lead to the development of cardiac hypertrophy and often require surgical intervention. Using an animal model of newborn hypertrophy and biventricular isolated working heart we confirm the metabolic profile of the newborn rabbit heart, in which fatty acid oxidation provides the vast majority of energy to the heart. Our findings show that when right ventricle load is added, the increasing energy requirements are met by increasing glucose oxidation rates. Our data generated by the isolated biventricular working heart model further supports the concept of the newborn heart in a state of deficient energy reserve.
12

Energy metabolism in the hypertrophied newborn rabbit heart

Jesus Cadete, Virgilio Jorge Unknown Date
No description available.
13

Role of CYP-mediated Arachidonic Acid Metabolites in Development of Cardiac Hypertrophy and Chronic Doxorubicin-induced Cardiotoxicity

Alsaad,Abdulaziz M Unknown Date
No description available.
14

Cardiac hypertrophy and expression of the natriuretic peptide system in genetic models of heme oxygenase-1

ARMSTRONG, DAVID 20 October 2009 (has links)
Objective: Heme oxygenase-1 (HO-1) has been well established as a cytoprotective molecule, and has been shown to exert cardioprotective effects in both hypertension and cardiac hypertrophy. However, the precise mechanism of the cardioprotective effect of HO-1 has yet to be fully elucidated. The natriuretic peptide system (NPS) is also a key player in cardiovascular homeostasis and tissue dynamics, and has also been shown to be cardioprotective in a variety of pathologic conditions. This study examined the effect of high dietary salt treatment in genetic models of HO-1, and assessed the expression of the NPS in the left ventricle (LV), in order to gain insight into the relationship between varying levels of HO-1 expression with the development of cardiac hypertrophy and the expression of the NPS. Methods: Age-matched 12-week old male HO-1 knockout (HO-1-/-) and HO-1 cardiomyocyte-specific transgenic overexpressing (HO-1Tg) mice were treated with either normal salt (NS; 0.8%) or high salt (HS; 8.0%) chow for 5 weeks. LV mRNA expression was determined using quantitative real-time RT-PCR. Results: HO-1-/- mice fed HS diet had significantly higher left ventricle-to-body weight ratio (LV/BW) compared to HO-1+/+ mice fed NS diet. HO-1-/- mice had significantly reduced expression of the NPS compared to controls, and these mice did not exhibit a salt-induced increase in ANP expression. HS treatment had no effect on LV/BW in HO-1Tg mice compared to controls. HO-1Tg mice had significantly higher ANP and BNP expression compared to controls. Conclusions: The presence of HO-1 is required for normal salt-induced changes in the local cardiac NPS. HO-1 ablation resulted in significantly lower mRNA expression of the NPS, whereas HO-1 overexpression resulted in higher mRNA expression of the NPS. These data indicate that the detrimental effect of reduced HO-1 expression and the cardioprotective effect of increased HO-1 expression may be due, in part, to altered expression of the NPS. / Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2009-10-20 09:15:20.541
15

DEVELOPMENTAL ORIGINS OF CARDIOVASCULAR DISEASE: ATRIAL NATRIURETIC PEPTIDE GENE DISRUPTED MICE AS A MODEL OF GESTATIONAL HYPERTENSION

ARMSTRONG, DAVID 01 October 2012 (has links)
Introduction: Developmental origins of disease refers to the theory that adverse maternal environments influence fetal development and the risk of cardiovascular disease (CVD) in adulthood. To test the hypothesis that gestational hypertension influences the development of CVD in offspring, a novel experimental paradigm was developed using atrial natriuretic peptide gene disrupted mice (ANP-/-). The objective of this thesis was to determine the effect of gestational hypertension on cardio-renal function in offspring. Methods: ANP+/+ females were crossed with ANP-/- males (yielding ANP+/-WT offspring) and ANP-/- females with ANP+/+ males (yielding ANP+/-KO offspring). Previous work has established that ANP-/- dams are hypertensive during pregnancy. Offspring gene expression was measured using qPCR. Offspring arterial blood pressure (BP) was measured with a non-invasive tail cuff system. Offspring left ventricular (LV) function was examined using echocardiography (ECHO). Offspring were treated with normal salt (NS) or high salt (HS) chow for five weeks to assess salt-sensitivity. Daily injections of isoproterenol (ISO) were used to induce cardiac stress in offspring. Collagen deposition was assessed using Masson’s trichrome and picrosirius red staining. Results: Absence of maternal ANP had no effect on either litter size or offspring growth, but caused significant LV hypertrophy in offspring, with no change in LV function. Treatment with ISO resulted in myocardial fibrosis and significant LV diastolic dysfunction with a restrictive filling pattern (increased E/A ratio and E/e’) only in ANP+/-KO offspring. Furthermore, absence of maternal ANP was associated with salt-resistant BP in offspring. Conclusions: Gestational hypertension using the ANP-/- mouse model results in a salt-resistant phenotype in offspring, as well as significant cardiac hypertrophy and an adverse response to activation of the sympathetic nervous system in adult offspring. These data suggest that adverse maternal environments may increase the risk of cardiovascular disease in offspring later in life. / Thesis (Ph.D, Anatomy & Cell Biology) -- Queen's University, 2012-09-18 16:12:01.147
16

Dephosphorylation of Connexin43 Associated with Ventricular Hypertrophy

SASANO, Chieko, UZZAMAN, Mahmud, EMDAD, Luni, TAKAGISHI, Yoshiko, HONJO, Haruo, KAMIYA, Kaichiro, KODAMA, Itsuo 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。 / 国立情報学研究所で電子化したコンテンツを使用している。
17

The independent roles of PMCA1 and PMCA4 in the development and progression of left ventricular hypertrophy and failure

Stafford, Nicholas Pierre January 2014 (has links)
Heart failure is responsible for one in twenty deaths in the UK, and as the average age of the general population increases that number is predicted to rise over the coming years. Hypertrophic growth is believed to be an adaptive response to a chronic increase in workload under circumstances such as hypertension, yet it is also known to contribute to the pathological progression into heart failure. Abnormal calcium handling is known to play a critical role in determining disease progression, not only through its function as the driving force behind myocardial contraction and relaxation but also through directing the signals which regulate hypertrophic growth. Both isoforms 1 and 4 of the diastolic calcium extrusion pump plasma membrane calcium ATPase (PMCA) are present in the heart, yet unlike in other cell types their contribution to overall calcium clearance is only small; however their role in the disease process is yet to be defined. A novel mouse line was generated in which both PMCA1 and 4 were deleted from the myocardium (PMCA1:4dcko mice). Through comparison with PMCA1 knockout mice (PMCA1cko) this thesis set out to identify the specific function of each pump under normal conditions and during the development of pathological hypertrophy induced by pressure overload through transverse aortic constriction (TAC).Under basal conditions each isoform functioned independently, PMCA1 to extrude calcium during diastole and PMCA4 to regulate calcium levels during systole; however the loss of neither isoform impacted significantly on cardiac function. In response to TAC, PMCA1cko mice progressed rapidly into decompensation and displayed signs of systolic failure after just 2 weeks, whilst cardiac function was preserved in TAC controls. Calcium handling analysis revealed that prior to the onset of failure PMCA1cko mice displayed a distinct lack of adaptive changes to calcium cycling which were present in controls. In stark contrast, the additional loss of PMCA4 led to an attenuated hypertrophic response to TAC in PMCA1:4dcko mice which remarkably preserved cardiac function despite the absence of PMCA1. This adds to accumulating evidence which suggests that the inhibition of PMCA4 may be protective during the development of pathological hypertrophy, whilst highlighting the possibility for a novel role for PMCA1 in coordinating essential adaptations required to enhance calcium cycling in response to the increased demands imposed on the left ventricle during pressure overload.
18

The role of glycogen synthase kinase-3 and camp response element-binding protein in the induction and regulation of cardiac hypertrophy in neonatal rat ventricular myocytes

Sepulveda, Sean Matthew 08 April 2016 (has links)
Glycogen synthase kinase-3 (GSK3) is a ubiquitously expressed protein kinase with key roles in controlling proliferation, differentiation and survival of a wide variety of mammalian cells. In most cells, GSK3 is active in the absence of growth factor signaling and acts to inhibit cell proliferation and induce apoptosis. In cardiomyocytes, GSK3 plays a novel role as a negative regulator of cardiac hypertrophy, and it appears that GSK3 plays a central role as an inhibitor of cardiac hypertrophy induced by a variety of stimuli. In the present study, we sought to further elucidate the role of GSK3 in cardiomyocyte hypertrophy by studying the effects of inhibition of GSK3 in the absence of other hypertrophic stimuli. By combining global expression profiling with computational predictions and experimental analysis of transcription factor binding sites, we have identified hypertrophy-related genes that are controlled directly by GSK3 and have found that CREB is a major transcriptional target of GSK3 in cardiomyocytes. In addition, we find that inhibition of GSK3 is sufficient to induce the re-expression of fetal development genes characteristic of hypertrophy, but not sufficient to induce the full hypertrophic phenotype of cardiomyocyte growth.
19

The Role of STIM1 in Hypertrophy-Related Contractile Dysfunction

Troupes, Constantine January 2016 (has links)
Increases in cardiac afterload caused by disease conditions results in remodeling of heart structure by hypertrophy and alterations in the molecular regulation of contractile performance. These adaptations can be regulated by various Ca2+-dependent signaling processes. STIM1 is an important regulator of Ca2+ signaling in different cell types by sensing endoplasmic reticular Ca2+ levels and coupling to plasma membrane Orai channels. The role of STIM1 in heart is not well understood, given the robust Ca2+ regulatory machinery present within cardiac myocytes. Previous reports indicate that STIM1 may play a role in regulation of cardiac hypertrophy. The goal of this work is to understand how STIM1 can affect contractile Ca2+ regulation in normal and diseased myocytes. We induced cardiac hypertrophy by slow progressive pressure overload in adult cats. Isolated adult feline ventricular myocytes (AFMs) exhibited increased STIM1 expression and activity, which correlated with altered Ca2+ handling. Use of BTP2 to block Orai channels resulted in a reduction of action potential (AP) duration and diastolic spark rate of hypertrophied myocytes, without affecting myocytes from sham-operated animals. Overexpressed STIM1 in cultured AFMs caused persistent Ca2+ influx that resulted in increased diastolic spark rates and prolonged APs, similar to myocytes from banded animals. STIM1 mediated Ca2+ influx could load the sarcoplasmic reticulum and activated CaMKII, which increased spark rates and lead to spontaneous APs. Importantly, STIM1 operated by associating with Orai channels because these effects could be blocked with either BTP2 or with a dominant negative Orai construct. Prolonged Ca2+ entry through this pathway eventually causes cell death. In conclusion, the work presented in this thesis establishes a role for STIM1-Orai in contractile Ca2+ regulation. / Biomedical Sciences
20

Triad3A Attenuates Pathological Cardiac Hypertrophy Involving the Augmentation of Ubiquitination-Mediated Degradation of TLR4 and TLR9

Lu, Xia, He, Yijie, Tang, Chao, Wang, Xiaoyang, Que, Linli, Zhu, Guoqing, Liu, Li, Ha, Tuanzhu, Chen, Qi, Li, Chuanfu, Xu, Yong, Li, Jiantao, Li, Yuehua 01 March 2020 (has links)
Activation of TLRs mediated the NF-κB signaling pathway plays an important pathophysiological role in cardiac hypertrophy. Triad3A, a ubiquitin E3 ligase, has been reported to negatively regulate NF-κB activation pathway via promoting ubiquitination and degradation of TLR4 and TLR9 in innate immune cells. The role of Triad3A in cardiac hypertrophic development remains unknown. The present study investigated whether there is a link between Triad3A and TLR4 and TLR9 in pressure overload induced cardiac hypertrophy. We observed that Triad3A levels were markedly reduced following transverse aortic constriction (TAC) induced cardiac hypertrophy. Similarly, stimulation of neonatal rat cardiac myocytes (NRCMs) with angiotensin-II (Ang II) significantly decreased Triad3A expression. To determine the role of Triad3A in TAC-induced cardiac hypertrophy, we transduced the myocardium with adenovirus expressing Triad3A followed by induction of TAC. We observed that increased expression of Triad3A significantly attenuated cardiac hypertrophy and improved cardiac function. To investigate the mechanisms by which Triad3A attenuated cardiac hypertrophy, we examined the Triad3A E3 ubiquitination on TLR4 and TLR9. We found that Triad3A promoted TLR4 and TLR9 degradation through ubiquitination. Triad3A mediated TLR4 and TLR9 degradation resulted in suppression of NF-κB activation. Our data suggest that Triad3A plays a protective role in the development of cardiac hypertrophy, at least through catalyzing ubiquitination-mediated degradation of TLR4 and TLR9, thus negatively regulating NF-κB activation.

Page generated in 0.077 seconds