• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

De novo germline disorders of the Ras-MAPK pathway : clinical delineation, molecular diagnosis and pathogenesis

Burkitt Wright, Emma Mary Milborough January 2014 (has links)
This work sought to investigate the clinical phenotypes and molecular basis of cardio-facio-cutaneous syndrome (CFC), a germline disorder of the Ras-MAPK pathway, like Noonan syndrome (NS) and neurofibromatosis type I, caused by mutations in genes encoding proteins that act within this signal transduction pathway. CFC is most commonly due to mutation in BRAF, and less commonly MAP2K1, MAP2K2 or KRAS. A proportion of patients currently have no mutation identified. Mutations and clinical features of patients with a molecular diagnosis of CFC were investigated, which demonstrated a wide range of causative mutations, and some unclassified variants. Both known and novel clinical features of CFC were identified. A strong association between severe contractures and the p.(Tyr130Cys) mutation in MAP2K1 was found, which has not previously been reported. In contrast to the large number of patients with a confirmed molecular diagnosis, several with a highly suggestive clinical phenotype have been found to have no mutationin any of the known CFC genes. The molecular basis of these presentations was investigated by conventional Sanger sequencing of candidate genes. Fourteen patients with the p.(Ser2Gly) mutation in SHOC2 were identified, with clinical presentations consistent with CFC, NS or CS. Target enrichment and massively parallel sequencing of selected genes was undertaken in ten patients. Mutations in known genes were identified in four patients (including the positive control). Candidate causative variants in novel genes were suggested in two further patients, one of which was confirmed on Sanger sequencing. Whole exome sequencing of patient-parent trios was also undertaken to identify de novo variants. Three trios were analysed, and in one patient with a clinical diagnosis of CFC, a frameshift mutation in NF1 was identified, which was confirmed by Sanger sequencing to be present and de novo. The molecular effects of CFC-associated mutations in BRAF on Ras-MAPK pathway signalling were studied in cell culture systems, using Western blotting for ERK1/2 phosphorylation, in vitro kinase assays and luciferase assays, to assess activity of downstream targets of the Ras-MAPK pathway. Altered pathway activity was demonstrated for novel variants that had not previously been characterised at the molecular level, which was in keeping with the findings of the effects of previously studied mutations. The cardiac phenotype in animal models of CFC, CS and NS/CFC was explored using expression microarrays to identify potentially important genes and pathways in the pathogenesis of hypertrophic cardiomyopathy (a progressive but potentially treatable disease feature) in these conditions. A signature of increased expression of Myh7, the embryonic form of myosin, was identified in the heart of the mouse model of CFC due to a B-Raf mutation at four weeks postnatal age, but comparative analysis suggested significant differences in either the mechanisms causing cardiac phenotypes, or the timescales over which these may exert their effects, in the three models. In summary, the most significant findings of this work were that SHOC2 mutation is a frequent cause of a severe NCFC presentation, and massively parallel sequencing can be an effective means of molecular investigation of this group of disorders. Novel features of CFC syndrome that were identified include severe contractures in association with p.(Tyr130Cys) mutations in MAP2K1. The analysis of mouse models of the NCFCs was hampered by heterogeneity within the expression microarray results, and low levels of expression of the H-Ras mutant allele in the mouse model of Costellosyndrome.
2

RAS-MAPK syndromes - a Clinical and Molecular Investigation

Nyström, Anna-Maja January 2009 (has links)
The RAS-MAPK syndromes are a group of clinically and genetically related disorders, characterized by cardiac defects, facial dysmorphism, cutaneous abnormalities and neurocognitive impairment. The pathogenesis is dysregulation of the RAS-MAPK pathway, and several genes within the pathway are involved. The present thesis aimed at identifying genetic causes in three of the RAS-MAPK syndromes - Noonan syndrome (NS), cardio-facio-cutaneous syndrome (CFC) and Neurofibromatosis-Noonan syndrome (NFNS) - and at correlating genotype with phenotype. A mutation analysis of six genes associated with the RAS-MAPK syndromes in NS and CFC patients revealed mutations in 10/31 patients. The results suggested more complex genetic overlap and genetic heterogeneity among these syndromes than previously believed. Subsequently, gene dosage imbalances of seven RAS-MAPK-syndrome-related genes were investigated in mutation-negative patients. A multiplex ligation-dependent probe amplification strategy was developed that excluded copy number changes of these genes as a common mechanism in NS. Genetic causes of clinical variability in NS were investigated where an atypical and severe NS patient was described. In addition, multiple café-au-lait (CAL) spots affected the patient and four otherwise healthy family members. Molecular analysis of four candidate genes revealed a previously described de novo PTPN11 mutation and an inherited NF1 variant in the patient. Neither of them explained the CAL spots trait, which consequently represented a distinct entity. The results suggested that the atypical and severe phenotype in the patient could be a consequence of an additive effect. Finally, a family displaying NFNS was investigated clinically and molecularly revealing a novel mutation in the GAP-domain of NF1. Furthermore, the results suggested that other RAS-MAPK-syndrome-related genes are not involved in NFNS. A proposal of prioritizing the GAP-domain of NF1 in NFNS was presented. Conclusively, these studies contribute to further understanding of the RAS-MAPK syndromes and facilitate the diagnostic process and future prognosis prediction.

Page generated in 0.1281 seconds