• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis of UV-absorbing carrier ampholytes for characterization of isoelectric membranes

Hwang, Ann 30 October 2006 (has links)
Isoelectric focusing is one of the most important techniques in protein separations. Preparative-scale isoelectric separations often use buffering membranes (isoelectric membranes), but there are no good known methods for the characterization of their pI values. Therefore, UV-absorbing carrier ampholyte mixtures (UVCAs) have been synthesized, analytically characterized, and utilized for the characterization of the pI value of a buffering membrane. To synthesize the UVCAs, addition of a UV-absorbing electrophile, 3-phenoxypropyl bromide (PhOPrBr), to a pentaethylenehexamine (PEHA) carrier ampholyte backbone, resulted in an intermediate that was subsequently reacted with increasing amounts of acrylic acid (up to 8 equiv) and itaconic acid (up to 2 equiv) via Michael’s addition. The intermediates and final products were characterized by 1H-NMR and full-column imaging capillary isoelectric focusing techniques. An optimal blended mixture of selected UVCAs was first desalted and purified by isoelectric trapping and its composition verified by full-column imaging isoelectric focusing. The mixture of UVCAs possessed a broad pI distribution from approximately pH 3 – 10. By isoelectric trapping, the mixture was separated into two subfractions with a polyacrylamide-based isoelectric membrane of known pI as the separation membrane and poly(vinyl) alcohol-based buffering membranes as the restriction membranes. The pI of the most basic UV-active carrier ampholyte in the anodic fraction was determined to be 4.4 and the pI of the most acidic UV-active carrier ampholyte in the cathodic fraction was determined to be 4.4, confirming that the pH of the polyacrylamide-based isoelectric membrane was pH 4.4.
2

Synthesis of UV-absorbing carrier ampholytes for characterization of isoelectric membranes

Hwang, Ann 30 October 2006 (has links)
Isoelectric focusing is one of the most important techniques in protein separations. Preparative-scale isoelectric separations often use buffering membranes (isoelectric membranes), but there are no good known methods for the characterization of their pI values. Therefore, UV-absorbing carrier ampholyte mixtures (UVCAs) have been synthesized, analytically characterized, and utilized for the characterization of the pI value of a buffering membrane. To synthesize the UVCAs, addition of a UV-absorbing electrophile, 3-phenoxypropyl bromide (PhOPrBr), to a pentaethylenehexamine (PEHA) carrier ampholyte backbone, resulted in an intermediate that was subsequently reacted with increasing amounts of acrylic acid (up to 8 equiv) and itaconic acid (up to 2 equiv) via Michael’s addition. The intermediates and final products were characterized by 1H-NMR and full-column imaging capillary isoelectric focusing techniques. An optimal blended mixture of selected UVCAs was first desalted and purified by isoelectric trapping and its composition verified by full-column imaging isoelectric focusing. The mixture of UVCAs possessed a broad pI distribution from approximately pH 3 – 10. By isoelectric trapping, the mixture was separated into two subfractions with a polyacrylamide-based isoelectric membrane of known pI as the separation membrane and poly(vinyl) alcohol-based buffering membranes as the restriction membranes. The pI of the most basic UV-active carrier ampholyte in the anodic fraction was determined to be 4.4 and the pI of the most acidic UV-active carrier ampholyte in the cathodic fraction was determined to be 4.4, confirming that the pH of the polyacrylamide-based isoelectric membrane was pH 4.4.

Page generated in 0.08 seconds