• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 19
  • 16
  • 6
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 106
  • 34
  • 31
  • 29
  • 21
  • 19
  • 17
  • 16
  • 14
  • 13
  • 12
  • 12
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

MOMENT DE CASIMIR: EFFET DU VIDE QUANTIQUE SUR L'IMPULSION D'UN MILIEU BI-ANISOTROPE

Kawka, Sebastien 14 October 2010 (has links) (PDF)
Le point principal de cette étude est l'existence du moment cinétique de Casimir d'un point de vue microscopique, montrée à l'aide d'un modèle comprenant un oscillateur harmonique soumis à des champs électrique et magnétique externes, croisés, homogènes de façon à obtenir les propriétés d'un milieu bi-anisotrope, en interaction avec les fluctuations quantiques du vide. Nous avons donné un ordre de grandeur de la vitesse de l'oscillateur attendue pour des conditions expérimentales raisonnables. Nous trouvons une contribution classique due aux champs externes de l'ordre de 0,1 micromètre par seconde et une contribution quantique attribuée aux fluctuations du vide de l'ordre de 2 nanomètre par seconde. Dans le cas d'un atome d'hydrogène en mouvement, où la bi-anisotropie est due à l'effet Fizeau, nous trouvons que l'effet du couplage avec le vide donne une correction de masse en accord avec le principe d'équivalence masse-énergie d'Einstein, à température nulle ou non-nulle. Dans le cas de deux atomes en mouvement dans le vide, nous donnons la marche à suivre dans le but de montrer que l'énergie de Casimir entre les deux atomes, c'est-à-dire liée aux forces de Van der Waals, participe de la même façon à la masse inertielle de l'ensemble. Cette approche confirme que le moment de Casimir n'est pas exclu voire même réclamé par les principes de la relativité restreinte. Nous nous sommes intéressés au cas de l'énergie Casimir d'une boule diélectrique diluée. Un calcul numérique de l'énergie associée aux forces de Van der Waals, dont l'équivalence avec l'énergie de Casimir a été montrée par ailleurs, nous a permis de déterminer l'énergie totale de la boule en fonction de son rayon. Nous déterminons les termes associés à la chaleur latente et à la tension de surface. Nous trouvons ensuite un terme variant de façon linéaire avec le rayon, en désaccord avec les méthodes de renormalisation utilisées avec une description continue. Ce désaccord est expliqué par la description continue de la matière où les interactions à courte distance sont surévaluées et conduisent à des termes divergents non considérés par la renormalisation.
32

Surprises in theoretical Casimir physics : quantum forces in inhomogeneous media

Simpson, William M. R. January 2014 (has links)
This thesis considers the problem of determining Casimir-Lifshitz forces in inhomogeneous media. The ground-state energy of the electromagnetic field in a piston-geometry is discussed. When the cavity is empty, the Casimir pressure on the piston is finite and independent of the small-scale physics of the media that compose the mirrors. However, it is demonstrated that, when the cavity is filled with an inhomogeneous dielectric medium, the Casimir energy is cut-off dependent. The local behavior of the stress tensor commonly used in calculations of Casimir forces is also determined. It is shown that the usual expression for the stress tensor is not finite anywhere within such a medium, whatever the temporal dispersion or index profile, and that this divergence is unlikely to be removed by modifying the regularisation. These findings suggest that the value of the Casimir pressure may be inextricably dependent on the detailed behavior of the mirror and the medium at large wave vectors. This thesis also examines two exceptions to this rule: first, the case of an idealised metamaterial is considered which, when introduced into a cavity, reduces the magnitude of the Casimir force. It is shown that, although the medium is inhomogeneous, it does not contribute additional scattering events but simply modifies the effective length of the cavity, so the predicted force is finite and can be stated exactly. Secondly, a geometric argument is presented for determining a Casimir stress in a spherical mirror filled with the inhomogeneous medium of Maxwell's fish-eye. This solution questions the idea that the Casimir force of a spherical mirror is repulsive, but prompts additional questions concerning regularisation and the role of non-local effects in determining Casimir forces.
33

Fluctuational electrodynamics for nonlinear materials in and out of equilibrium

Soo, Heino 16 April 2019 (has links)
No description available.
34

A new regularization procedure for calculating the Casimir energy

Ghadirian, Bahman, University of Western Sydney, College of Health and Science, School of Biomedical and Health Sciences January 2008 (has links)
This thesis deals with the concepts of a very interesting phenomenon in quantum physics, the Casimir effect. Here the effect is investigated in detail and its importance to other areas of physics is analysed. The Casimir effect is produced by disturbing the vacuum energy when material boundaries or background fields are introduced in the vacuum. The usual approach to this effect is the vacuum fluctuation that has been studied in the past in relation to the discussion of the zero-point energy as a result of the field resemblance to the quantum harmonic oscillators, where residual ground state energy must be considered. In this thesis a new method to study vacuum fluctuations is presented. This new approach to the problem which is more classical is based on the Heisenberg uncertainty principle and the very important fluctuation-dissipation theorem. The other aim of the thesis is to implement a new algorithm for regularizing the Casimir energy for a massive scalar field. Unlike the previous works on this problem by other authors that give approximate results, this attempt will produce precise results. My method is based on a new regularization procedure that allows us to employ the very reliable dimensional regularization scheme in place of a more mathematically complicated zeta-function regularization procedure. In order to achieve this goal I will deal with the problem by using the Euler-Maclaurin summation formula. The result will be a regularized Casimir energy for the case of a massive scalar field. This model may be used for the other geometrical boundaries and different fields. / Doctor of Philosophy (PhD)
35

Near-Field Optical Forces: Photonics, Plasmonics and the Casimir Effect

Woolf, David Nathaniel 08 October 2013 (has links)
The coupling of macroscopic objects via the optical near-field can generate strong attractive and repulsive forces. Here, I explore the static and dynamic optomechanical interactions that take place in a geometry consisting of a silicon nanomembrane patterned with a square-lattice photonic crystal suspended above a silicon-on-insulator substrate. This geometry supports a hybridized optical mode formed by the coupling of eigenmodes of the membrane and the silicon substrate layer. This system is capable of generating nanometer-scale deflections at low optical powers for membrane-substrate gaps of less than 200 nm due to the presence of an optical cavity created by the photonic crystal that enhances both the optical force and a force that arises from photo-thermal-mechanical properties of the system. Feedback between Brownian motion of the membrane and the optical and photo-thermal forces lead to dynamic interactions that perturb the mechanical frequency and linewidth in a process known as ``back-action.'' The static and dynamic properties of this system are responsible for optical bistability, mechanical cooling and regenerative oscillations under different initial conditions. Furthermore, solid objects separated by a small distance experience the Casimir force, which results from quantum fluctuations of the electromagnetic field (i.e. virtual photons).The Casimir force supplies a strong nonlinear perturbation to membrane motion when the membrane-substrate separation is less than 150 nm. Taken together, the unique properties of this system makes it an intriguing candidate for transduction, accelerometry, and sensing applications. / Engineering and Applied Sciences
36

Stability of Generic Equilibria of the 2n Dimensional Free Rigid Body Using the Energy-Casimir Method

Spiegler, Adam January 2006 (has links)
The rigid body has been one of the most noteworthy applications of Newtonian mechanics. Applying the principles of classical mechanics to the rigid body is by no means routine. The equations of motion, though discovered two hundred and fifty years ago by Euler, have remained quite elusive since their introduction. Understanding the rigid body has required the applications of concepts from integrable systems, algebraic geometry, Lie groups, representation theory, and symplectic geometry to name a few. Moreover, several important developments in these fields have in fact originated with the study of the rigid body and subsequently have grown into general theories with much wider applications.In this work, we study the stability of equilibria of non-degenerate orbits of the generalized rigid body. The energy-Casimir method introduced by V.I. Arnold in 1966 allows us to prove stability of certain non-degenerate equilibria of systems on Lie groups. Applied to the three dimensional rigid body, it recovers the classical Euler stability theorem [12]: rotations around the longest and shortest principal moments of inertia are stable equilibria. This method has not been applied to the analysis of rigid body dynamics beyond dimension n = 3. Furthermore, no conditions for the stability of equilibria are known at all beyond n = 4, in which case the conditions are not of the elegant longest/shortest type [10].Utilizing the rich geometric structures of the symmetry group G = SO(2n), we obtain stability results for generic equilibria of the even dimensional free rigid body. After obtaining a general expression for the generic equilibria, we apply the energy-Casimir method and find that indeed the classical longest/shortest conditions on the entries of the inertia matrix are suffcient to prove stability of generic equilibria for the generalized rigid body in even dimensions.
37

Demostration of non-additivity ans asymmetry in the lateral Casimir force

Chiu, Hsiang-Chih, January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Includes bibliographical references (leaves 146-154). Issued in print and online. Available via ProQuest Digital Dissertations.
38

Delacroix "d'après l'antique" the patronage of the duc de Blacas and Delacroix's coin imagery /

Neis, Laura Hickman. January 1983 (has links)
Thesis (M.A.)--University of Wisconsin--Madison, 1983. / Typescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 152-159).
39

De-wetting of cobalt thin films on sapphire

Espinosa, Jorge D. January 2007 (has links)
Thesis (Ph. D.)--West Virginia University, 2007. / Title from document title page. Document formatted into pages; contains ix, 106 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references (p. 102-105).
40

The Worldline Method for Electromagnetic Casimir Energies

Mackrory, Jonathan 06 September 2017 (has links)
The Casimir effect refers to the primarily attractive force between material bodies due to quantum fluctuations in the electromagnetic field. The Casimir effect is difficult to calculate in general, since it is sensitive to the exact shapes of the bodies and involves contributions from all frequencies. As a result, calculating the Casimir effect between general bodies usually requires a numerical approach. The worldline method computes Casimir energies by creating an ensemble of space-time paths corresponding to a virtual particle interacting with the bodies. This method was originally developed for a scalar fields coupled to an idealized background potential, rather than the vector electromagnetic field interacting with media. This thesis presents work on extending the worldline method to account for the material properties of the interacting bodies, and the polarizations of electromagnetism. This thesis starts by covering background material on path integrals, and quantizing the electromagnetic field in media. The electromagnetic field is decomposed in terms of two scalar fields for planar bodies, where these scalar fields correspond to the transverse-electric and transverse-magnetic polarizations of the electromagnetic field. The worldline path integrals are developed for both polarizations, and solved analytically. Next, numerical methods are developed and tested in the context of planar bodies. The starting positions, and scale of the paths, and shape of the paths are sampled via Monte Carlo methods. The transverse-magnetic path integral also requires specialized methods for estimating derivatives, and path construction. The analytical and numerical results for both worldline path integrals are in agreement with known solutions. Finally, specialized methods are developed for computing derivatives of the worldline Casimir-energy path integrals, allowing for efficient numerical computations of Casimir forces and torques.

Page generated in 0.035 seconds