• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serine-451 phosphorylation of bacterial-type phosphoenolpyruvate carboxylase by a calcium-dependent protein kinase links calcium signaling with anaplerotic pathway control in developing castor oil seeds

Hill, Allyson 03 September 2013 (has links)
Phosphoenolpyruvate (PEP) carboxylase (PEPC) is a tightly controlled enzyme situated at a pivotal branchpoint of plant C-metabolism. Two physically and kinetically distinct oligomeric classes of PEPC exist in the endosperm of developing castor oil seeds (COS). Class-1 PEPC is a typical homotetramer composed of 107-kDa plant-type PEPC (PTPC) subunits, whereas the 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between Class-1 PEPC and distantly related 118-kDa bacterial-type PEPC (BTPC) subunits. BTPC functions as both a catalytic and regulatory subunit of the allosterically-desensitized Class-2 PEPC, which has been hypothesized to support massive PEP-flux to malate for leucoplast fatty acid synthesis. Previous studies established that BTPC: (i) subunits of COS Class-2 PEPC are subject to inhibitory phosphorylation in vivo, and (ii) at Ser425 and Ser451 within an intrinsically disordered region. This study focuses on characterization of the COS protein kinase (BTPC-K) that phosphorylates BTPC at Ser451. BTPC-K, having a native molecular mass of 63 kDa, was purified ~500-fold from developing COS endosperm. Its activity was absolutely dependent upon the presence of Ca2+ (Ka= 2.7 μM) and millimolar Mg2+. BTPC-K phosphorylated BTPC subunits of Class-2 PEPC strictly at Ser451 (Km= 1.1 μM), as well as histone type III-S (Km= 1.7 μM), but did not phosphorylate a BTPC S451D phosphomimetic mutant, native COS PTPC or sucrose synthase, or α-casein. BTPC-K displayed a broad pH-activity optima of pH 7.3, a Km for Mg2+-ATP of 6.6 μM, and marked inhibition by 3-P-glycerate and PEP. The possible control of BTPC-K by disulfide-dithiol interconversion was suggested by its rapid inactivation and subsequent reactivation when incubated with oxidized glutathione and then dithiothreitol. BTPC-K activity was insensitive to exogenous calmodulin, but potently inhibited by 100 µM trifluoperazine (a calmodulin antagonist). BTPC-K-mediated Ser451 phosphorylation of BTPC subunits of Class-2 PEPC inhibited BTPC activity by ~50% when assayed under suboptimal conditions (pH 7.3, 1 mM PEP with 10 mM L-malate). Overall the results of this study have led to the hypothesis that in vivo phosphorylation of COS BTPC at Ser451 is mediated by a dedicated calcium-dependent protein kinase (CDPK). / Thesis (Master, Biology) -- Queen's University, 2013-08-30 14:23:39.648

Page generated in 0.262 seconds