1 |
N-Heterocyclic Carbene Metal Complexes: Synthesis, Kinetics, Reactivity, and Recycling With PolymersSu, Haw-Lih 2011 August 1900 (has links)
N-Heterocyclic carbenes (NHCs) are good ligands to most transition metals forming stable complexes. Many of the NHC-metal complexes are now widely used catalysts. However, the usage of these catalysts encounters the general problems associated with homogeneous catalysis: the purification of the catalysis reaction products is often time-consuming and generates large amounts of waste. Moreover, the toxic or expensive catalysts are difficult to be separated, recycled, and reused. Chapters II and III of this dissertation focus on addressing these problems through the development of an easier and “greener” process to improve the usage of some NHC-metal complexes. Polymer-supported catalysts and polymer-supported sequestrants were prepared and used to facilitate the separation/recycling of catalysts and the purification of products. These polymer-supported ligands, catalysts, and sequestrants showed comparable reactivity to their low molecular weight counterparts and had different solubility properties due to the nature of polymers. Using these materials with the corresponding operations provides simple methods to separate deeply colored, metal-containing by-products from the reaction mixtures.
Chapter IV of this dissertation aims at solving a fundamental question about the nature of NHC-silver(I) complexes. The NHC-silver(I) complex is an important synthetic intermediate as it can be used to prepare other NHC-metal complexes through transmetallation. The carbene carbon of an NHC-silver(I) complex in 13C NMR spectra was usually reported as a doublet of doublets or as a singlet in different cases. This phenomenon was explained with a ligand exchange mechanism proposed twelve years ago. However, few reports are available in the literature about the mechanism of the NHC ligand exchange processes at silver. In order to facilitate the study of the solution behaviors of NHC-silver(I) complexes, 13C-labeled NHC-silver(I) complexes were prepared and studied using variable temperature 13C NMR spectroscopy. This study could be useful for future applications of ligand transferring from silver to other metals for the preparation of NHC-metal complexes.
|
2 |
New strategies for the rhodium-catalysed aqueous-biphasic hydroformylation of medium chain alkenesDesset, Simon L. January 2009 (has links)
Aqueous-biphasic organometallic catalysis is, as illustrated by the industrial hydroformylation of propene and butene, one of the most promising ways to overcome the intrinsic problem of catalyst separation in organometallic catalysis. However, for poorly water-soluble substrates, mass transfer limitations bring the reaction rate below any that could be economically viable, greatly limiting the scope of this elegant technology. We have studied three different strategies to overcome this limitation. We developed additives that speed up the reaction whilst retaining fast phase separation and good metal retention. Evidence suggests that those additives affect the reaction by forming emulsions with poor stability under the reaction conditions These emulsions increase the interfacial surface area but break after settling for a short time. We also developed ligands that allow the catalyst to be reversibly transported between an aqueous and an organic phase upon addition and removal of carbon dioxide. This allows the reaction to be carried out under homogeneous conditions, only limited by intrinsic kinetics, and the catalyst to be separated by aqueous extraction triggered by carbon dioxide. The catalyst can be returned to a fresh organic phase by flushing out the carbon dioxide. By applying this methodology for the hydroformylation of medium chain length alkenes, very high reaction rates were obtained and the catalyst could be recycle three times with excellent retention of activity and low metal leaching. This methodology could also be reversed with the reaction being carried out in an aqueous phase in the presence of carbon dioxide and extracting the catalyst into an organic solvent using nitrogen flushing. Finally, we briefly investigated the use of an oscillatory baffled reactor as a mean for mass transfer improvement for aqueous-biphasic hydroformylation. This new type reactor did not improve the performance of the system under the investigated conditions, but may require less energy input for equivalent agitation and mixing.
|
Page generated in 0.0983 seconds