• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iron-catalyzed graphitization of biochar to produce graphitic carbon materials

Shi, Ziyi January 2021 (has links)
Demand for high-quality graphite is expected to experience an extraordinary growth rate, in large part due to its wide range of industrial applications such as adsorbents, lubricants, electrodes, etc. This thesis developed a novel sustainable approach to produce green-graphite materials by applying biochar, acarbon-rich valuable by-product obtained from biomass, as a carbon precursor. Meanwhile, iron-based catalysts are applied to enable the graphitization at a relatively lower temperature. This study focuses on the different parameters which could affect the evolution of carbon structure. The samples were mixed with catalyst in two ways, dry mixing and wet impregnation. Aside from the addition method, several parameters including temperature, heating duration, and iron loading amount were varied from 800 to 1300 ℃, 1 to 6 hours, and 0 to 33.6% respectively, to figure out an optimum graphitization process. The samples were characterized by X-ray diffraction, Raman scattering, SEM and particle size distribution analysis. Based on the characterization results, it was confirmed that with the increase of the graphitization temperature, duration and amount of iron loading, synthetic graphite performs a better graphitization and a higher conversion rate. Meanwhile, a detailed dissolution-precipitation mechanism was introduced and discussed in the context of iron-carbon equilibrium phase diagram to explain this catalytic process. / Efterfrågan på högkvalitativ grafit förväntas uppleva en extraordinär tillväxttakt, till stor del på grund av dess breda utbud av industriella applikationer som adsorbenter, smörjmedel, elektroder etc.  Denna avhandling utvecklar ett nytt hållbart tillvägagångssätt för att producera grön-grafit genom att använda biokol, en kolrik värdefull biprodukt erhållen från biomassa, som en kolprekursor. Även järnbaserade katalysatorer används för att möjliggöra grafitisering vid relativt lägre temperaturer. Denna  studie fokuserar på  de olika  parametrar  som  kan  påverka  bildandet  av kolstrukturen. Proverna blandades med katalysatormaterialet på två sätt, torrblandning och våtimpregnering. Förutom tillsatsmetoden justeras flera andra parametrar, inklusive temperatur, uppvärmningstid och mängd järnbelastning för  att  få  en optimal  grafitiseringsprocess.  Proverna karakteriserades därefter genom röntgendiffraktion, Ramanspridning, SEM och  partikelstorleksfördelningsanalys. Baserat på karakteriseringsresultaten bekräftades det att med en ökande grafitiseringstemperatur, varaktighet och mängd av järnbelastning, får syntetisk grafit en bättre grafitisering och en högre omvandlingsgrad. Även en detaljerad upplösnings-utfällningsmekanism introducerades och diskuterades i sammanhanget av järn-kol jämviktsfasdiagrammet  för  att förklara den katalytiska processen.
2

Catalytic Graphitization of Biochar to Produce Graphitic Carbon Materials

Chen, Shiwei January 2020 (has links)
Graphite materials are vital industrial products. The rapid development of the battery and electronic computer industries has incentivized a great demand for graphite materials. However, today, graphite materials are commercially produced via thermal treating fossil oil or coal derived coke at a temperature higher than 2500℃. Both of the fossil-based feedstock and the energy-intensive production process are contrary to the concept of sustainable development. This thesis proposes a sustainable low-temperature catalytic graphitization process to produce graphite materials with highly ordered crystallinity by using commercial biomass pyrolysis biochar as the feedstock. Iron nitrate was selected as the graphitization catalyst. The effect of the graphitization temperature and the iron loading amount on the properties of the produced carbon products was studied. Produced graphite materials were characterized by performing X-ray diffraction, Nitrogen adsorption-desorption, and elemental analysis. Results show that the average graphitic crystalline size and the degree of graphitization of the product increased with the increase of the graphitization temperature and the iron loading amount. However, the increase of the iron loading amount reduced the catalyst removal efficiency of the acid washing process. When the graphitization temperature is higher than 1100℃ and the iron loading amount is higher than 11.2 wt.%, the crystallinity of the produced graphite material is better than that of the commercial graphite. The graphite material with the best crystallinity, which was produced at a temperature of 1300℃ and an iron loading of 33.6 wt.%, has crystallinity very close tothe pure graphite. / Grafitmaterial är viktiga industriprodukter. Den snabba utvecklingen av batteri- och elektronikdatorindustrin har stimulerat en stor efterfrågan på grafitmaterial. Idag framställs emellertid grafitmaterial kommersiellt via termisk behandling av fossil olja eller kol härledd koks vid en temperatur högre än 2500℃. Både det fossilbaserade råvaran och den energikrävande produktionsprocessen strider mot begreppet hållbar utveckling. Denna avhandling föreslår en hållbar katalytisk grafitiseringsprocess vid låg temperatur för att producera grafitmaterial med högt ordnad kristallinitet genom att använda kommersiell biomassapyrolysbiokol som råmaterial. Järnnitrat valdes som grafitiseringskatalysator. Effekten av grafitiseringstemperaturen och järnbelastningsmängden på egenskaperna hos de producerade kolprodukterna studerades. Framställda grafitmaterial kännetecknades av utförande av röntgendiffraktion, kväve-adsorptionsdesorption och elementaranalys. Resultaten visar att den genomsnittliga grafitiska kristallina storleken och graden av grafitisering av produkten ökade med ökningen av grafitiseringstemperaturen och järnbelastningsmängden. Ökningen av järnbelastningsmängden minskade emellertid katalysatorns avlägsnande effektivitet för syratvättprocessen. När grafitiseringstemperaturen är högre än 1100℃ och järnbelastningsmängden är högre än 11,2 viktprocent, är kristalliniteten hos det producerade grafitmaterialet bättre än den för den kommersiella grafiten. Grafitmaterialet med den bästa kristalliniteten, som producerades vid en temperatur av 1300℃ och en järnbelastning på 33,6 viktprocent, har kristallinitet mycket nära den rena grafiten.

Page generated in 0.1152 seconds