• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical and Chemical Behaviour and Management of Intermittently Closed and Open Lakes and Lagoons (ICOLLs) in NSW

Haines, Philip Edward, n/a January 2006 (has links)
The term 'Intermittently Closed and Open Lake or Lagoon (ICOLL)' has been adopted in NSW to described wave dominated barrier estuaries with an intermittent connection to the ocean. ICOLLs can also be found in south east Queensland, south-west Western Australia, and some parts of Victoria and Tasmania, although they are not the dominant estuary type as in NSW. From an international perspective, ICOLLs are also found in South Africa, New Zealand, Mexico and the Atlantic coast of Brazil and Uruguay. Within NSW, ICOLLs are mostly located south of Sydney, due to the high wave activity and close proximity of the Great Dividing Range to the coast, which results in small coastal catchments and thus small fluvial and sediment runoff. The distinguishing difference between ICOLLs and other estuary types is the variable condition of their entrances, which also makes them the most sensitive type of estuary to human interference (HRC, 2002; Boyd et al., 1992). The sensitivity of ICOLLs to external inputs has been described in this thesis based on their morphometric characteristics, which includes their size, shape and predominant entrance condition. NSW ICOLLs exhibit a wide range of physical conditions. Some ICOLLs are rarely open to the ocean, while others are rarely closed. Also, some ICOLLs have experienced extensive development within their catchments, while some are located mostly or wholly within National Parks and other protected reserves. When closed, ICOLLs behave like terminal lakes, retaining and assimilating 100% of the external inputs delivered to the system. When open, tidal flushing assists with advection and dispersion of inputs, however, significant tidal attenuation across the entrance still limits opportunities for effective removal of pollutants. The majority of NSW ICOLLs are considered to be mostly closed (i.e., have a closed entrance for more than 60% of the time), while remaining ICOLLs tend to be mostly open (i.e., have a closed entrance for less than 20% of the time). Few ICOLLs have entrances that are open and closed for roughly equal proportions of time, thus resulting in a distinctive bimodal behaviour of entrance condition (i.e., mostly open or mostly closed). NSW ICOLLs tend to be mostly closed unless (i) the catchment is larger than 100km2, and/or (ii) the exposure of the entrance to ocean swell waves is less than 60 degrees and/or (iii) the entrance channel contains geomorphic controls (e.g. shallow bedrock outcrops). Unless opened artificially, ICOLLs will generally remain closed until a sufficient volume of catchment runoff accumulates within the waterway to increase water levels to a level that overtops (breaches) the entrance sand berm. Once breached, high velocity flows over the berm cause scour and the development of a formalised entrance channel, which increases exponentially until an optimum width and depth has been reached (determined by the hydrostatic head, geomorphic controls and tidal conditions at the time). Following entrance breakout and lowering of the lagoon level, sand is reworked back into the entrance under the influence of flood tides and wave processes. The environmental condition of ICOLLs has generally been assumed as being dependent on the state of the catchment and the associated input of nutrients (form and magnitude) to the system. Biogeochemical processes also are reported to influence the condition of ICOLLs, particularly denitrification, which is controlled by the organic load on the bed and the extent of benthic algae and macrophytic productivity. In addition to this, however, it is demonstrated that the predominant and prevailing entrance conditions (i.e. open or closed) also influence the physical, chemical and biological environments. ICOLLs are particularly susceptible to the impacts of future climate change. This thesis provides a description of expected impacts on NSW ICOLLs environments associated in response to future climate changes, based on a detailed appreciation of physical processes and their follow-on consequences. Impacts on ICOLLs are expected as a result of increasing sea level, altered rainfall patterns, and modified offshore wave climate. A survey of relevant government officials has revealed that more than 50% of NSW ICOLLs are artificially opened before water levels reach the height of the natural entrance sand berm. Artificial entrance opening is mostly carried out to mitigate inundation of public and/or private assets around ICOLL foreshores, such as roads, backyards, farming lands and on-site sewage (septic) systems. Truncation of the hydraulic regime of ICOLLs can modify other physical, chemical and biological processes, and can result in deleterious impacts such as the terrestrialisation of estuarine wetlands and foreshores. Few statutory environmental planning mechanisms protect ICOLLs from future degradation. This thesis has identified the key issues that potentially compromise ICOLL integrity and sustainability, which include the expected future population growth in coastal NSW (thus increasing pressure for intensification of development within ICOLL catchments), future climate change (particularly increases in sea level), and the increased demand for amenity, particularly during summer holiday periods (i.e. 'summer impacts'). A series of management models have been developed to address key issues. The models comprise a suite of strategies that target future development and existing management practices, through a range of new or modified planning instruments. Models for the future management of ICOLL entrances aim to prevent artificial openings in the long-term. This requires, however, the systematic relocation, raising or flood-proofing of public and private assets that have been established on land that is potentially subject to inundation. Increasing sea levels in the future will compound the need for improved entrance management. Pro-active, integrated and adaptive management strategies need to be implemented today to minimise the on-going conflict and potential for continued environmental degradation in the future.
2

Soil moisture dynamics and soil moisture controlled runoff processes at different spatial scales : from observation to modelling

Gräff, Thomas January 2011 (has links)
Soil moisture is a key state variable that controls runoff formation, infiltration and partitioning of radiation into latent and sensible heat. However, the experimental characterisation of near surface soil moisture patterns and their controls on runoff formation remains a challenge. This subject was one aspect of the BMBF-funded OPAQUE project (operational discharge and flooding predictions in head catchments). As part of that project the focus of this dissertation is on: (1) testing the methodology and feasibility of the Spatial TDR technology in producing soil moisture profiles along TDR probes, including an inversion technique of the recorded signal in heterogeneous field soils, (2) the analysis of spatial variability and temporal dynamics of soil moisture at the field scale including field experiments and hydrological modelling, (3) the application of models of different complexity for understanding soil moisture dynamics and its importance for runoff generation as well as for improving the prediction of runoff volumes. To fulfil objective 1, several laboratory experiments were conducted to understand the influence of probe rod geometry and heterogeneities in the sampling volume under different wetness conditions. This includes a detailed analysis on how these error sources affect retrieval of soil moisture profiles in soils. Concerning objective 2 a sampling strategy of two TDR clusters installed in the head water of the Wilde Weißeritz catchment (Eastern Ore Mountains, Germany) was used to investigate how well “the catchment state” can be characterised by means of distributed soil moisture data observed at the field scale. A grassland site and a forested site both located on gentle slopes were instrumented with two Spatial TDR clusters that consist of up to 39 TDR probes. Process understanding was gained by modelling the interaction of evapotranspiration and soil moisture with the hydrological process model CATFLOW. A field scale irrigation experiment was carried out to investigate near subsurface processes at the hillslope scale. The interactions of soil moisture and runoff formation were analysed using discharge data from three nested catchments: the Becherbach with a size of 2 km², the Rehefeld catchment (17 km²) and the superordinate Ammelsdorf catchment (49 km²). Statistical analyses including observations of pre-event runoff, soil moisture and different rainfall characteristics were employed to predict stream flow volume. On the different scales a strong correlation between the average soil moisture and the runoff coefficients of rainfall-runoff events could be found, which almost explains equivalent variability as the pre-event runoff. Furthermore, there was a strong correlation between surface soil moisture and subsurface wetness with a hysteretic behaviour between runoff soil moisture. To fulfil objective 3 these findings were used in a generalised linear model (GLM) analysis which combines state variables describing the catchments antecedent wetness and variables describing the meteorological forcing in order to predict event runoff coefficients. GLM results were compared to simulations with the catchment model WaSiM ETH. Hereby were the model results of the GLMs always better than the simulations with WaSiM ETH. The GLM analysis indicated that the proposed sampling strategy of clustering TDR probes in typical functional units is a promising technique to explore soil moisture controls on runoff generation and can be an important link between the scales. Long term monitoring of such sites could yield valuable information for flood warning and forecasting by identifying critical soil moisture conditions for the former and providing a better representation of the initial moisture conditions for the latter. / Abflussentwicklung, Infiltration und die Umverteilung von Strahlung in latenten und sensiblen Wärmestrom werden maßgeblich durch die Bodenfeuchte der vadosen Zone gesteuert. Trotz allem, gibt s wenig Arbeiten die sich mit der experimentellen Charakterisierung der Bodenfeuchteverteilung und ihre Auswirkung auf die Abflussbildung beschäftigen. Der Fokus dieser Dissertation wurde darauf ausgerichtet: (1) die Methode des Spatial TDR und deren Anwendbarkeit einschließlich der Inversion des TDR Signals in heterogenen Böden zu prüfen, (2) die Analyse der räumlichen und zeitlichen Dynamik der Bodenfeuchte auf der Feldskala einschließlich Feldexperimenten und hydrologischer Modellierung, (3) der Aufbau verschiedener Modellanwendungen unterschiedlicher Komplexität um die Bodenfeuchtedynamiken und die Abflussentwicklung zu verstehen und die Vorhersage des Abflussvolumens zu verbessern. Um die Zielsetzung 1 zu erreichen, wurden verschiedene Laborversuche durchgeführt. Hierbei wurde der Einfluss der Sondenstabgeometrie und verschiedener Heterogenitäten im Messvolumen bei verschiedenen Feuchtegehalten untersucht. Dies beinhaltete eine detaillierte Analyse wie diese Fehlerquellen die Inversion des Bodenfeuchteprofils beeinflussen. Betreffend der Zielsetzung 2, wurden 2 TDR-Cluster in den Quellgebieten der Wilden Weißeritz installiert (Osterzgebirge) und untersucht, wie gut der Gebietszustand mit räumlich hochaufgelösten Bodenfeuchtedaten der Feldskala charakterisiert werden kann. Um die Interaktion zwischen Evapotranspiration und Bodenfeuchte zu untersuchen wurde das hydrologische Prozessmodell CATFLOW angewendet. Ein Beregnungsversuch wurde durchgeführt um die Zwischenabflussprozesse auf der Hangskala zu verstehen. Die Interaktion zwischen Bodenfeuchte und Abflussentwicklung wurde anhand von drei einander zugeordneten Einzugsgebieten analysiert. Statistische Analysen unter Berücksichtigung von Basisabfluss, Bodenvorfeuchte und verschiedenen Niederschlagscharakteristika wurden verwendet, um auf das Abflussvolumen zu schließen. Auf den verschiedenen Skalen konnte eine hohe Korrelation zwischen der mittleren Bodenfeuchte und dem Abflussbeiwert der Einzelereignisse festgestellt werden. Hierbei konnte die Bodenfeuchte genauso viel Variabilität erklären wie der Basisabfluss. Im Hinblick auf Zielsetzung 3 wurden “Generalised liner models” (GLM) genutzt. Dabei wurden Prädiktorvariablen die den Gebietszustand beschreiben und solche die die Meteorologische Randbedingungen beschreiben genutzt um den Abflussbeiwert zu schätzen. Die Ergebnisse der GLMs wurden mit Simulationsergebnissen des hydrologischen Gebietsmodells WaSiM ETH verglichen. Hierbei haben die GLMs eindeutig bessere Ergebnisse geliefert gegenüber den WaSiM Simulationen. Die GLM Analysen haben aufgezeigt, dass die verwendete Messstrategie mehrerer TDR-Cluster in typischen funktionalen Einheiten eine viel versprechende Methode ist, um den Einfluss der Bodenfeuchte auf die Abflussentwicklung zu verstehen und ein Bindeglied zwischen den Skalen darstellen zu können. Langzeitbeobachtungen solcher Standorte sind in der Lage wichtige Zusatzinformationen bei der Hochwasserwarnung und -vorhersage zu liefern durch die Identifizierung kritischer Gebietszustände für erstere und eine bessere Repräsentation der Vorfeuchte für letztere.

Page generated in 0.1072 seconds