21 |
The Structure of Child and Adolescent Aggression: Confirmatory Factor Analysis of a Brief Peer Conflict ScaleRussell, Justin 13 August 2014 (has links)
The importance of simultaneous consideration of forms and functions in youth measures of aggressive behavior is well established. Competing models have presented these highly interrelated constructs as either independent (e.g., reactive or overt) or paired factors (e.g., reactive and overt). The current study examines these models in the context of assessing the viability of a new self-report measure, the Peer Conflict Scale – 20 Item Version. Confirmatory factor analyses were conducted on PCS 20 responses from 1,048 school-age youth living in the Gulf Coast region. Both models significantly improved upon one or two-factor alternatives, and demonstrated partial invariance across gender and grade. The models showed comparable levels of fit to the data, though some loadings for the independent factors model were non-significant. Results encourage use of the PCS 20 across research settings and developmental contexts, while also demonstrating the viability of a paired factors model of aggression.
|
22 |
A NEW INDEPENDENCE MEASURE AND ITS APPLICATIONS IN HIGH DIMENSIONAL DATA ANALYSISKe, Chenlu 01 January 2019 (has links)
This dissertation has three consecutive topics. First, we propose a novel class of independence measures for testing independence between two random vectors based on the discrepancy between the conditional and the marginal characteristic functions. If one of the variables is categorical, our asymmetric index extends the typical ANOVA to a kernel ANOVA that can test a more general hypothesis of equal distributions among groups. The index is also applicable when both variables are continuous. Second, we develop a sufficient variable selection procedure based on the new measure in a large p small n setting. Our approach incorporates marginal information between each predictor and the response as well as joint information among predictors. As a result, our method is more capable of selecting all truly active variables than marginal selection methods. Furthermore, our procedure can handle both continuous and discrete responses with mixed-type predictors. We establish the sure screening property of the proposed approach under mild conditions. Third, we focus on a model-free sufficient dimension reduction approach using the new measure. Our method does not require strong assumptions on predictors and responses. An algorithm is developed to find dimension reduction directions using sequential quadratic programming. We illustrate the advantages of our new measure and its two applications in high dimensional data analysis by numerical studies across a variety of settings.
|
23 |
Multiple Imputation for Two-Level Hierarchical Models with Categorical Variables and Missing at Random DataJanuary 2016 (has links)
abstract: Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis models are used which a) do not accurately capture the structure of relationships in the data such as clustered/hierarchical data, b) do not allow or control for missing values present in the data, or c) do not accurately compensate for different data types such as categorical data, then the assumptions associated with the model have not been met and the results of the analysis may be inaccurate. In the presence of clustered/nested data, hierarchical linear modeling or multilevel modeling (MLM; Raudenbush & Bryk, 2002) has the ability to predict outcomes for each level of analysis and across multiple levels (accounting for relationships between levels) providing a significant advantage over single-level analyses. When multilevel data contain missingness, multilevel multiple imputation (MLMI) techniques may be used to model both the missingness and the clustered nature of the data. With categorical multilevel data with missingness, categorical MLMI must be used. Two such routines for MLMI with continuous and categorical data were explored with missing at random (MAR) data: a formal Bayesian imputation and analysis routine in JAGS (R/JAGS) and a common MLM procedure of imputation via Bayesian estimation in BLImP with frequentist analysis of the multilevel model in Mplus (BLImP/Mplus). Manipulated variables included interclass correlations, number of clusters, and the rate of missingness. Results showed that with continuous data, R/JAGS returned more accurate parameter estimates than BLImP/Mplus for almost all parameters of interest across levels of the manipulated variables. Both R/JAGS and BLImP/Mplus encountered convergence issues and returned inaccurate parameter estimates when imputing and analyzing dichotomous data. Follow-up studies showed that JAGS and BLImP returned similar imputed datasets but the choice of analysis software for MLM impacted the recovery of accurate parameter estimates. Implications of these findings and recommendations for further research will be discussed. / Dissertation/Thesis / Doctoral Dissertation Educational Psychology 2016
|
24 |
The development of authentic virtual reality scenarios to measure individuals’ level of systems thinking skills and learning abilitiesDayarathna, Vidanelage L. 10 December 2021 (has links) (PDF)
This dissertation develops virtual reality modules to capture individuals’ learning abilities and systems thinking skills in dynamic environments. In the first chapter, an immersive queuing theory teaching module is developed using virtual reality technology. The objective of the study is to present systems engineering concepts in a more sophisticated environment and measure students learning abilities. Furthermore, the study explores the performance gaps between male and female students in manufacturing systems concepts. To investigate the gender biases toward the performance of developed VR module, three efficacy measures (simulation sickness questionnaire, systems usability scale, and presence questionnaire) and two effectiveness measures (NASA TLX assessment and post-motivation questionnaire) were used. The second and third chapter aims to assess individuals’ systems thinking skills when they engage in complex multidimensional problems. A modern complex system comprises many interrelated subsystems and various dynamic attributes. Understanding and handling large complex problems requires holistic critical thinkers in modern workplaces. Systems Thinking (ST) is an interdisciplinary domain that offers different ways to better understand the behavior and structure of a complex system. The developed scenario-based instrument measures students’ cognitive tendency for complexity, change, and interaction when making decisions in a turbulent environment. The proposed complex systems scenarios are developed based on an established systems thinking instrument that can measure important aspects of systems thinking skills. The systems scenarios are built in a virtual environment that facilitate students to react to real-world situations and make decisions. The construct validity of the VR scenarios is assessed by comparing the high systematic scores between ST instrument and developed VR scenarios. Furthermore, the efficacy of the VR scenarios is investigated using the simulation sickness questionnaire, systems usability scale, presence questionnaire, and NASA TLX assessment.
|
25 |
An Analysis of Financial Planning for Employees of East Tennessee State University.Campbell, Steven Roy 06 May 2006 (has links) (PDF)
The purpose of this study was to determine if East Tennessee State University provides its employees appropriate financial planning services. In particular, it is unknown to what degree employees of East Tennessee State University have actively engaged in financial planning.
The research was conducted during June and July, 2005. Data were gathered by surveying faculty, staff, and retirees of the university. Ten percent of the population responded to the study. The survey instrument covered the areas of retirement, other financial planning services, and attitudes toward financial planning.
The results of the data analysis gave insight into what degree employees of East Tennessee State University have actively engaged in financial planning. For example, over 20% of the respondents encouraged employees to start early in order to achieve the benefit of time value of money. Fifteen percent of the respondents suggested financial planning workshops be offered on a more frequent basis. Approximately 10% of the respondents preferred an instructor to be independent, instead of a financial salesperson. The study provided an increase in the body of knowledge on financial planning for the ETSU employee and established a historical database for the various programs offered within the ETSU system.
|
26 |
Data Mining Methods For Malware DetectionSiddiqui, Muazzam 01 January 2008 (has links)
This research investigates the use of data mining methods for malware (malicious programs) detection and proposed a framework as an alternative to the traditional signature detection methods. The traditional approaches using signatures to detect malicious programs fails for the new and unknown malwares case, where signatures are not available. We present a data mining framework to detect malicious programs. We collected, analyzed and processed several thousand malicious and clean programs to find out the best features and build models that can classify a given program into a malware or a clean class. Our research is closely related to information retrieval and classification techniques and borrows a number of ideas from the field. We used a vector space model to represent the programs in our collection. Our data mining framework includes two separate and distinct classes of experiments. The first are the supervised learning experiments that used a dataset, consisting of several thousand malicious and clean program samples to train, validate and test, an array of classifiers. In the second class of experiments, we proposed using sequential association analysis for feature selection and automatic signature extraction. With our experiments, we were able to achieve as high as 98.4% detection rate and as low as 1.9% false positive rate on novel malwares.
|
27 |
Node Classification on Relational Graphs Using Deep-RGCNsChandra, Nagasai 01 March 2021 (has links) (PDF)
Knowledge Graphs are fascinating concepts in machine learning as they can hold usefully structured information in the form of entities and their relations. Despite the valuable applications of such graphs, most knowledge bases remain incomplete. This missing information harms downstream applications such as information retrieval and opens a window for research in statistical relational learning tasks such as node classification and link prediction. This work proposes a deep learning framework based on existing relational convolutional (R-GCN) layers to learn on highly multi-relational data characteristic of realistic knowledge graphs for node property classification tasks. We propose a deep and improved variant, Deep-RGCNs, with dense and residual skip connections between layers. These skip connections are known to be very successful with popular deep CNN-architectures such as ResNet and DenseNet. In our experiments, we investigate and compare the performance of Deep-RGCN with different baselines on multi-relational graph benchmark datasets, AIFB and MUTAG, and show how the deep architecture boosts the performance in the task of node property classification. We also study the training performance of Deep-RGCNs (with N layers) and discuss the gradient vanishing and over-smoothing problems common to deeper GCN architectures.
|
28 |
Regression Analysis for Ordinal Outcomes in Matched Study Design: Applications to Alzheimer's Disease StudiesAustin, Elizabeth 09 July 2018 (has links) (PDF)
Alzheimer's Disease (AD) affects nearly 5.4 million Americans as of 2016 and is the most common form of dementia. The disease is characterized by the presence of neurofibrillary tangles and amyloid plaques [1]. The amount of plaques are measured by Braak stage, post-mortem. It is known that AD is positively associated with hypercholesterolemia [16]. As statins are the most widely used cholesterol-lowering drug, there may be associations between statin use and AD. We hypothesize that those who use statins, specifically lipophilic statins, are more likely to have a low Braak stage in post-mortem analysis.
In order to address this hypothesis, we wished to fit a regression model for ordinal outcomes (e.g., high, moderate, or low Braak stage) using data collected from the National Alzheimer's Coordinating Center (NACC) autopsy cohort. As the outcomes were matched on the length of follow-up, a conditional likelihood-based method is often used to estimate the regression coefficients. However, it can be challenging to solve the conditional-likelihood based estimating equation numerically, especially when there are many matching strata. Given that the likelihood of a conditional logistic regression model is equivalent to the partial likelihood from a stratified Cox proportional hazard model, the existing R function for a Cox model, coxph( ), can be used for estimation of a conditional logistic regression model. We would like to investigate whether this strategy could be extended to a regression model for ordinal outcomes.
More specifically, our aims are to (1) demonstrate the equivalence between the exact partial likelihood of a stratified discrete time Cox proportional hazards model and the likelihood of a conditional logistic regression model, (2) prove equivalence, or lack there-of, between the exact partial likelihood of a stratified discrete time Cox proportional hazards model and the conditional likelihood of models appropriate for multiple ordinal outcomes: an adjacent categories model, a continuation-ratio model, and a cumulative logit model, and (3) clarify how to set up stratified discrete time Cox proportional hazards model for multiple ordinal outcomes with matching using the existing coxph( ) R function and interpret the regression coefficient estimates that result. We verified this theoretical proof through simulation studies. We simulated data from the three models of interest: an adjacent categories model, a continuation-ratio model, and a cumulative logit model. We fit a Cox model using the existing coxph( ) R function to the simulated data produced by each model. We then compared the coefficient estimates obtained. Lastly, we fit a Cox model to the NACC dataset. We used Braak stage as the outcome variables, having three ordinal categories. We included predictors for age at death, sex, genotype, education, comorbidities, number of days having taken lipophilic statins, number of days having taken hydrophilic statins, and time to death. We matched cases to controls on the length of follow up. We have discussed all findings and their implications in detail.
|
29 |
An Application of an In-Depth Advanced Statistical Analysis in Exploring the Dynamics of Depression, Sleep Deprivation, and Self-EsteemGaffari, Muslihat 01 August 2024 (has links) (PDF)
Depression, intertwined with sleep deprivation and self-esteem, presents a significant challenge to mental health worldwide. The research shown in this paper employs advanced statistical methodologies to unravel the complex interactions among these factors. Through log-linear homogeneous association, multinomial logistic regression, and generalized linear models, the study scrutinizes large datasets to uncover nuanced patterns and relationships. By elucidating how depression, sleep disturbances, and self-esteem intersect, the research aims to deepen understanding of mental health phenomena. The study clarifies the relationship between these variables and explores reasons for prioritizing depression research. It evaluates how statistical models, such as log-linear, multinomial logistic regression, and generalized linear models, shed light on their intricate dynamics. Findings offer insights into risk and protective factors associated with these variables, guiding tailored interventions for individuals in psychological distress. Additionally, policymakers can utilize these insights to develop comprehensive strategies promoting mental health and well-being at a societal level.
|
30 |
Deep Learning One-Class Classification With Support Vector MethodsHampton, Hayden D 01 January 2024 (has links) (PDF)
Through the specialized lens of one-class classification, anomalies–irregular observations that uncharacteristically diverge from normative data patterns–are comprehensively studied. This dissertation focuses on advancing boundary-based methods in one-class classification, a critical approach to anomaly detection. These methodologies delineate optimal decision boundaries, thereby facilitating a distinct separation between normal and anomalous observations. Encompassing traditional approaches such as One-Class Support Vector Machine and Support Vector Data Description, recent adaptations in deep learning offer a rich ground for innovation in anomaly detection. This dissertation proposes three novel deep learning methods for one-class classification, aiming to enhance the efficacy and accuracy of anomaly detection in an era where data volume and complexity present unprecedented challenges. The first two methods are designed for tabular data from a least squares perspective. Formulating these optimization problems within a least squares framework offers notable advantages. It facilitates the derivation of closed-form solutions for critical gradients that largely influence the optimization procedure. Moreover, this approach circumvents the prevalent issue of degenerate or uninformative solutions, a challenge often associated with these types of deep learning algorithms. The third method is designed for second-order tensors. This proposed method has certain computational advantages and alleviates the need for vectorization, which can lead to structural information loss when spatial or contextual relationships exist in the data structure. The performance of the three proposed methods are demonstrated with simulation studies and real-world datasets. Compared to kernel-based one-class classification methods, the proposed deep learning methods achieve significantly better performance under the settings considered.
|
Page generated in 0.1174 seconds