• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 5
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 43
  • 23
  • 22
  • 17
  • 17
  • 17
  • 12
  • 12
  • 10
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of some solid-state battery materials

James, A. C. W. P. January 1988 (has links)
No description available.
2

Structural and electrochemical characterization of high-energy oxide cathodes for lithium ion batteries

Lee, Eun Sung 25 February 2013 (has links)
Lithium-ion batteries are the most promising rechargeable battery system for both vehicle applications and stationary storage of electricity produced from renewable sources such as solar and wind energies. However, the current lithium ion technology does not fully meet the requirements of these applications in terms of energy and power density. One approach to realizing a combination of high energy and power density is to use a composite cathode that consists of the high-capacity lithium-rich layered oxide Li[Li,Mn,Ni,Co]O2 and the high-voltage spinel oxide LiMn1.5Ni0.5O4. This dissertation explores the unique structural characteristics and their effect on the electrochemical performance of the layered-spinel composite oxide cathodes along with individual layered and spinel oxides over a wide voltage range (5.0 – 2.0 V). Initially, the effect of cation ordering on the electrochemical and structural characteristics of LiMn1.5Ni0.5O4 during cycling between 5.0 and 2.0 V were investigated by an analysis of the X-ray diffraction (XRD) and electrochemical data. Structural studies revealed that the cation ordering affects the size of the empty-octahedral sites in the spinel lattice. The differences in the size of the empty-octahedral sites affect the discharge profile below 3 V due to the variation in lattice distortion during lithium ion insertion into 16c octahedral sites. With the doped LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, Co, and Ga) spinels, different dopant ions have different effects on the degree of cation ordering due to the differences in ionic radii and surface-segregation characteristics. The compositional and wt.% variations of the layered and spinel phases from the nominal values in the layered-spinel composites were obtained by employing a joint XRD and neutron diffraction (ND) Rietveld refinement method. With the obtained composition and ex-situ XRD data, the mechanism for the increase in capacity and the facile phase transformation of the layered phase in the composite cathodes to a 3 V spinel-like phase during cycling was proposed. Investigations focused on synthesis temperature revealed that the electrochemical characteristics of the composites are highly affected by the synthesis temperature due to the change in the surface area of the sample and cation ordering of the spinel phase. In addition, the electrochemical performance of the lithium-rich layered oxide Li[Li,Mn,Ni,Co]O2 could be improved by blending it with a lithium-free insertion host VO2(B) and by controlling the amount of lithium ions extracted from the layered lattice during the first charge process. / text
3

Novel organosulfur cathode materials for advanced lithium batteries

Bell, Michaela Elaine 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Recent innovations in portable electronics, electric vehicles and power generation by wind and solar have expanded the need for effcient battery storage. Lithium-ion batteries have been the frontline contender of battery storage yet are not able to match current demands. Alternatively, lithium-sulfur batteries are a promising technology to match the consumer demands. Elemental sulfur cathodes incur a variety of problems during cycling including the dissolution of intermediate lithium polysul- fides, an undesirable volume change (~ 80%) when completely reduced and a high dependence on liquid electrolyte, which quickly degrades the cell's available energy density. Due to these problems, the high theoretical capacity and energy density of lithium sulfur cells are unattainable. In this work, A new class of phenyl polysul- fides, C6H5SxC6H5(4 < x <6), are developed as liquid sulfur containing cathode materials. This technology was taken a step further to fulfill and emerging need for exible electronics in technology. Phenyl tetrasulfide (C6H5S4C6H5) was polymerized to form a high energy density battery with acute mobility. Lithium half-cell testing shows that phenyl hexasulfide (C6H5S6C6H5) can provide a specific capacity of 650mAh/g and capacity retention of 80% through 500 cycles at 1C rate along with superlative performance up to 10C. Furthermore, 1, 302W h/ kg and 1, 720W h/L are achievable at a low electrolyte/active material ratio. Electrochemical testing of polymer phenyl tetrasulfide reveals high specific capacities of 634mAh /g at 1C, while reaching 600mAh /g upon mechanical strain testing. This work introduces novel cathode materials for lithium-sulfur batteries and provides a new direction for the development of alternative high-capacity flexible cathode materials.
4

Cathode Materials Development for Proton Conducting SOFCs

Zhou, Guihua Unknown Date
No description available.
5

Relaxation analysis of LiNiO₂-based cathode materials in the deeply lithium extracted region / 高電位領域までLi脱離したLiNiO₂系正極材料の緩和解析

Kang, Jian 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(エネルギー科学) / 甲第24001号 / エネ博第437号 / 新制||エネ||82(附属図書館) / 京都大学大学院エネルギー科学研究科エネルギー基礎科学専攻 / (主査)准教授 高井 茂臣, 教授 萩原 理加, 教授 佐川 尚 / 学位規則第4条第1項該当 / Doctor of Energy Science / Kyoto University / DFAM
6

Thermal and Electrochemical Characterization of Cathode Materials for High Temperature Lithium-Ion Batteries in Ionic Liquids

Shoaf, Jodie R. 07 April 2010 (has links)
No description available.
7

LiMn<sub>2</sub>O<sub>4</sub> as a Li-ion Battery Cathode. From Bulk to Electrolyte Interface

Eriksson, Tom January 2001 (has links)
<p>LiMn<sub>2</sub>O<sub>4</sub> is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance of Mn. Surface related reactions and bulk kinetics have been the major focus of this work. The main techniques exploited have been: electrochemical cycling, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and thermal analysis.</p><p>Interface formation between the LiMn<sub>2</sub>O<sub>4 </sub>cathode and carbonate-based electrolytes has been followed under different pre-treatment conditions. The variables have been: number of charge/discharge cycles, storage time, potential, electrolyte salt and temperature. The formation of the surface layer was found not to be governed by electrochemical cycling. The species precipitating on the surface of the cathodes at ambient temperature have been determined to comprise a mixture of organic and inorganic compounds: LiF, Li<sub>x</sub>PF<sub>y</sub> (or Li<sub>x</sub>BF<sub>y</sub>, depending on the electrolyte salt used), Li<sub>x</sub>PO<sub>y</sub>F<sub>z</sub> (or Li<sub>x</sub>BO<sub>y</sub>F<sub>z</sub>) and poly(oxyethylene). Additional compounds were found at elevated temperatures: phosphorous oxides (or boron oxides) and polycarbonates. A model has been presented for the formation of these surface species at elevated temperatures. </p><p>The cathode surface structure was found to change towards a lithium-rich and Mn<sup>3+</sup>-rich compound under self-discharge. The reduction of LiMn<sub>2</sub>O<sub>4</sub>, in addition to the high operating potential, induces oxidation of the electrolyte at the cathode surface.</p><p>A novel <i>in situ</i> electrochemical/structural set-up has facilitated a study of the kinetics in the LiMn<sub>2</sub>O<sub>4</sub> electrode. The results eliminate solid-phase diffusion as the rate-limiting factor in electrochemical cycling. The electrode preparation method used results in good utilisation of the electrode, even at high discharge rates.</p>
8

Metastable Intermediate in LixMnO₂ Layered to Spinel Phase Transition

Reed, John, Ceder, Gerbrand, Van Der Ven, A. 01 1900 (has links)
Ab Initio calculations suggest that partially lithiated layered LixMnO₂ transforms to spinel in a two-stage process. In the first stage, a significant fraction of the Mn and Li ions rapidly occupy tetrahedral sites, forming a metastable intermediate. The second stage involves a more difficult coordinated rearrangement of Mn and Li ions to form spinel. This behavior is contrasted to LixCoO₂. The susceptibility of Mn for migration into the Li layer is found to be controlled by oxidation state which suggests various means of inhibiting the transformation. These strategies could prove useful in the creation of superior Mn based cathode materials. / Singapore-MIT Alliance (SMA)
9

LiMn2O4 as a Li-ion Battery Cathode. From Bulk to Electrolyte Interface

Eriksson, Tom January 2001 (has links)
LiMn2O4 is ideal as a high-capacity Li-ion battery cathode material by virtue of its low toxicity, low cost, and the high natural abundance of Mn. Surface related reactions and bulk kinetics have been the major focus of this work. The main techniques exploited have been: electrochemical cycling, X-ray diffraction, X-ray photoelectron spectroscopy, infrared spectroscopy and thermal analysis. Interface formation between the LiMn2O4 cathode and carbonate-based electrolytes has been followed under different pre-treatment conditions. The variables have been: number of charge/discharge cycles, storage time, potential, electrolyte salt and temperature. The formation of the surface layer was found not to be governed by electrochemical cycling. The species precipitating on the surface of the cathodes at ambient temperature have been determined to comprise a mixture of organic and inorganic compounds: LiF, LixPFy (or LixBFy, depending on the electrolyte salt used), LixPOyFz (or LixBOyFz) and poly(oxyethylene). Additional compounds were found at elevated temperatures: phosphorous oxides (or boron oxides) and polycarbonates. A model has been presented for the formation of these surface species at elevated temperatures. The cathode surface structure was found to change towards a lithium-rich and Mn3+-rich compound under self-discharge. The reduction of LiMn2O4, in addition to the high operating potential, induces oxidation of the electrolyte at the cathode surface. A novel in situ electrochemical/structural set-up has facilitated a study of the kinetics in the LiMn2O4 electrode. The results eliminate solid-phase diffusion as the rate-limiting factor in electrochemical cycling. The electrode preparation method used results in good utilisation of the electrode, even at high discharge rates.
10

Computational Studies of Nanotube Growth, Nanoclusters and Cathode Materials for Batteries

Larsson, Peter January 2009 (has links)
Density functional theory has been used to investigate cathode materials for rechargeable batteries, carbon nanotube interactions with catalyst particles and transition metal catalyzed hydrogen release in magnesium hydride nanoclusters. An effort has been made to the understand structural and electrochemical properties of lithium iron silicate (Li2FeSiO4) and its manganese-doped analogue. Starting from the X-ray measurements, the crystal structure of Li2FeSiO4 was refined, and several metastable phases of partially delithiated Li2FeSiO4 were identified. There are signs that manganese doping leads to structural instability and that lithium extraction beyond 50% capacity only occurs at impractically high potentials in the new material. The chemical interaction energies of single-walled carbon nanotubes and nanoclusters were calculated. It is found that the interaction needs to be strong enough to compete with the energy gained by detaching the nanotubes and forming closed ends with carbon caps. This represents a new criterion for determining catalyst metal suitability. The stability of isolated carbon nanotube fragments were also studied, and it is argued that chirality selection during growth is best achieved by exploiting the much wider energy span of open-ended carbon nanotube fragments. Magnesium hydride nanoclusters were doped with transition metals Ti, V, Fe, and Ni. The resulting changes in hydrogen desorption energies from the surface were calculated, and the associated changes in the cluster structures reveal that the transition metals not only lower the desorption energy of hydrogen, but also seem to work as proposed in the gateway hypothesis of transition metal catalysis.

Page generated in 0.0718 seconds