• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Uptake and Release Kinetics of Sulfolane by Cattail Plants

Leo, Tiffany 01 December 2008 (has links)
Sulfolane (tetrahydrothiophene 1,1-dioxide, C4H8O2S) is a highly water-soluble, non-ionizable, organic compound used along with diisopropanolamine in the SulfinolTM process to remove hydrogen sulfide from natural gas. Sulfolane has been identified in wetland vegetation near a sour gas processing facility in Alberta, Canada, and extensive uptake of sulfolane by cattails has also been demonstrated in a laboratory environment. Consequently, it has been suggested that plants could play an important role in the natural attenuation of sulfolane in contaminated wetlands. This assumes that the sulfolane is metabolized and/or sequestered in the plant and not released back into the environment during winter dieback. To address the potential release issue, individual cattails (Typha latifolia) were grown hydroponically in 500-mL glass containers containing one of three initial sulfolane concentrations (8, 40, or 200 mg/L) for a specified duration (7 to 28 days). Half the cattails were used to quantify uptake as a function of time and exposure concentration and the other half were used to evaluate the potential release of sulfolane into the hydroponic solution. Non-exposed cattails and non-planted systems containing sulfolane served as controls. The cattails used to evaluate the potential release of sulfolane were frozen directly in their individual containers at the end of the appropriate exposure period. After being frozen for a minimum of 72 hours, the containers were thawed and the amount of sulfolane released was monitored. At the end of the 28-day uptake period, sulfolane leaf tip tissue concentrations as high as 3600, 1050, and 165 mg/kg dry weight were found for the cattails initially exposed to 200, 40, and 8 mg/L sulfolane, respectively. The percentage of sulfolane subsequently released by the cattails after the freeze-thaw treatment declined as a function of the duration exposed. The percentages of sulfolane released measured in the water after 72 hours in addition to the plant tissue extractions were 71%, 54%, 27%, and 12% for the 40 mg/L concentration at 7-, 14-, 21-, and 28-day exposure periods, respectively. Other concentrations showed the same decreasing trend for increasing exposure periods. The declining release as a function of time suggests metabolism and/or sequestration of the sulfolane within the plant. The significant uptake and limited release of sulfolane from mature plants indicate that wetland plants could play an important role in its natural attenuation.
2

Shade, Moisture, and Woody Vegetation in Stormwater Management Basins: Influence on Cattail (Typha spp.) Growth

Bocskor, Priscilla 13 May 2010 (has links)
Stormwater management basins (SWMB) are used to mitigate urban runoff. The Virginia Department of Transportation relies on dry detention basins planted with mowed turfgrass. However, these basins often retain water; resulting in cattail (Typha spp.) and tree colonization. Managing agencies request cattail eradication and trees are also removed. However, if trees were allowed to remain they could alter basin dynamics, making conditions unsuitable for cattails. In a greenhouse study we tested the impact of three shade (heavy, medium, full sun) and soil moisture (dry, moist, flooded) treatments on cattail growth. After two months, cattail biomass indicated a strong interaction between soil moisture and shade (p<.0001). Increases in shade and reductions in soil moisture resulted in decreased biomass and rhizome length. Heavy shade and dry soil produced the most reductions in cattail growth (95% less biomass, 83% smaller rhizomes than cattails in full sun and flooded soil). However, considerable growth reductions still occurred in medium shade and moist soil (66% for biomass and 74% for rhizome lengths). In a field study in four unmaintained SWMB in Virginia, environmental data (litter layer, water table, soil organic matter, etc.) and vegetation composition (cattail and other herbaceous biomass, and woody vegetation influence index) were collected from 100, 0.25-m2 plots. Principal component analysis indicated cattails and trees occupy opposing environmental spaces. Water table is most strongly correlated to cattail biomass. While these results suggest trees could eliminate cattails from SWMB, more research is needed to determine the long-term impacts of trees on basin function. / Master of Science

Page generated in 0.0397 seconds