• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 16
  • 13
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 58
  • 17
  • 16
  • 16
  • 16
  • 16
  • 12
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Transplant Nutrient Conditioning Improves Cauliflower Early Yield

McGrady, J. J., Tilt, P. A. 05 1900 (has links)
No description available.
22

Root Volume and Planting Date Effects on Cauliflower Transplant Uniformity

McGrady, J., Coates, W., Jordan, K., Tilt, P. 05 1900 (has links)
No description available.
23

<i>In vivo</i> study of the role of the cytoskeleton and fungal golgi in hyphal tip growth of <i>Aspergillus nidulans</i>

Hubbard, Michelle Anne 07 May 2007
Filamentous fungi, such as <i>Aspergillus nidulans</i>, are composed of tubular, highly polarized, multinucleate cells called hyphae. Polar growth involves secretion specifically at the hyphal tip. Secretion involves intracellular transport and co-ordination of the cytoskeleton and the endomembrane system. <p>Intracellular transport is likely mediated by cytoskeletal elements, which, in fungal cells consist primarily of actin and microtubules (MTs). An <i>A. nidulans</i> strain transformed with green fluorescent protein (GFP) tagged α-tubulin was utilized in the investigation of relationship between cytoplasmic MT arrays and hyphal growth rate. <i>A. nidulans</i> MTs were observed to be long and flexuous and to run roughly parallel to the long axis of hyphae. No correlation between relative MT abundance and hyphal growth rate was observed, although non-growing hyphae had a lower relative MT abundance than growing hyphae. Actin depolymerization decreased hyphal growth rate while MT depolymerization did not. MT stabilization increased hyphal growth rate. Ethanol, the solvent in which the MT and actin inhibitors were dissolved, increased both average overall growth rate and growth rate variability for individual hyphae. Taxol appeared to interact with irradiation to decreased growth rate during imaging. <p>Golgi are involved in secretion and potentially in polar growth. An <i>A. nidulans</i> α-coatomer protein (COP)I homolog (α-COPI), tagged with GFP, was used to investigate the role(s) of fungal Golgi in polar growth. α-COPI-GFP co-localized with the known Golgi marker, α-2,6-sialyltransferase (ST), tagged with red fluorescent protein (RFP), in untreated hyphae. Based on this observation, I propose that α-COPI-GFP can be used as a proxy for fungal Golgi localization. Fungal Golgi were more abundant at hyphal tips than subapically. Fungal Golgi forward (tipward) velocity correlated with hyphal growth rate. Fungal Golgi forward velocity was, on average, approximately ten times greater than average hyphal growth rate. Actin depolymerization reduced fungal Golgi forward velocity while MT depolymerization did not. However, MT stabilization increased fungal Golgi forward velocity. <p>Polymerized MTs do not appear to be essential for hyphal growth but do appear to be involved in hyphal growth rate variability. MTs also appear to play some role in the movement of fungal Golgi. The distribution and movement of fungal Golgi is clearly related to polarity.
24

Chemical investigation of phytoalexins and phytoanticipins : isolation, synthesis and antifungal activity

Sarwar, Md Golam 03 August 2007
The focus of my research was on the secondary metabolites produced by crucifer plants under stress and their biological activity against fungi. Both cultivated and wild plants were investigated to isolate phytoalexins and phytoanticipins, and determine their metabolite profiles.<p>The first chapter of this thesis describes cruciferous plants and their most important pathogenic fungi. These plants are divided into three groups: oilseeds, vegetables and wild species. The metabolites isolated from these plants and their biosynthetic studies are reviewed. In addition economically important necrotrophic fungi such as <i>Leptosphaeria maculans</i>, <i>Alternaria brassicae</i>, <i>Sclerotinia sclerotiorum</i> and <i>Rhizoctonia solani</i> are also reviewed along with their phytotoxins. <p>The second chapter of this thesis describes the detection, isolation, structure determination, syntheses of stress metabolites and biological activity of these metabolites against <i>L. maculans</i>, <i>S. sclerotiorum</i> and <i>R. solani</i>. The investigation of cauliflower led to the isolation of seven phytoalexins: 1-methoxybrassitin (55), spirobrassinin (71), isalexin (64), brassicanal C (60), caulilexins A (106), B (107), and C (105). The phytoalexins caulilexins A (106), B (107) and C (105) were reported for the first time. Caulilexin A (106), having a disulfide bridge, showed the highest activity against S. sclerotiorum and R. solani among the known phytoalexins. Similarly four phytoalexins: 1-methoxybrassitin, brussalexins A (121), B (117) and C (118) along with four metabolites: ascorbigen (51), diindolylmethane (50), 1-methoxy-3,3-diindolylmethane (119) and di-(1-methoxy-3-indolyl)methane (120) were isolated from Brussels sprouts. The phytoalexins brussalexins A (121), B (117) and C (118) are new metabolites. Brussalexin A (121) is the only cruciferous phytoalexins having an allyl thiolcarbamate functional group. The metabolite 1-methoxy-3,3-diindolylmethane (119) is reported for the first time.<p>The investigation of brown mustard for polar metabolites led to the isolation of indole-3-acetonitrile (76) and spirobrassinin (71) along with isorhamnetin-3,7-diglucoside (134). Investigation of wild species such as Asian mustard, sand rocket, wallrocket, hedge mustard and Abyssinian mustard for production of stress metabolites led to the isolation of indole-3-acetonitrile (76), arvelexin (84), 1,4-dimethoxyindole-3-acetonitrile (137), rapalexins A (138) and B (142), methyl-1-methoxyindole-3-carboxylate (59) and metabolites bis(4-isothiocyanotobutyl)-disulfide (139), 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) and 3-(methylsulfinyl)-propylisothiocyanate (135). <p>Two metabolites were also isolated from Brussels sprouts and brown mustard; however, these structures are not yet determined. The metabolites 1,4-dimethoxyindole-3-acetonitrile (137) and 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) are reported for the first time.
25

<i>In vivo</i> study of the role of the cytoskeleton and fungal golgi in hyphal tip growth of <i>Aspergillus nidulans</i>

Hubbard, Michelle Anne 07 May 2007 (has links)
Filamentous fungi, such as <i>Aspergillus nidulans</i>, are composed of tubular, highly polarized, multinucleate cells called hyphae. Polar growth involves secretion specifically at the hyphal tip. Secretion involves intracellular transport and co-ordination of the cytoskeleton and the endomembrane system. <p>Intracellular transport is likely mediated by cytoskeletal elements, which, in fungal cells consist primarily of actin and microtubules (MTs). An <i>A. nidulans</i> strain transformed with green fluorescent protein (GFP) tagged α-tubulin was utilized in the investigation of relationship between cytoplasmic MT arrays and hyphal growth rate. <i>A. nidulans</i> MTs were observed to be long and flexuous and to run roughly parallel to the long axis of hyphae. No correlation between relative MT abundance and hyphal growth rate was observed, although non-growing hyphae had a lower relative MT abundance than growing hyphae. Actin depolymerization decreased hyphal growth rate while MT depolymerization did not. MT stabilization increased hyphal growth rate. Ethanol, the solvent in which the MT and actin inhibitors were dissolved, increased both average overall growth rate and growth rate variability for individual hyphae. Taxol appeared to interact with irradiation to decreased growth rate during imaging. <p>Golgi are involved in secretion and potentially in polar growth. An <i>A. nidulans</i> α-coatomer protein (COP)I homolog (α-COPI), tagged with GFP, was used to investigate the role(s) of fungal Golgi in polar growth. α-COPI-GFP co-localized with the known Golgi marker, α-2,6-sialyltransferase (ST), tagged with red fluorescent protein (RFP), in untreated hyphae. Based on this observation, I propose that α-COPI-GFP can be used as a proxy for fungal Golgi localization. Fungal Golgi were more abundant at hyphal tips than subapically. Fungal Golgi forward (tipward) velocity correlated with hyphal growth rate. Fungal Golgi forward velocity was, on average, approximately ten times greater than average hyphal growth rate. Actin depolymerization reduced fungal Golgi forward velocity while MT depolymerization did not. However, MT stabilization increased fungal Golgi forward velocity. <p>Polymerized MTs do not appear to be essential for hyphal growth but do appear to be involved in hyphal growth rate variability. MTs also appear to play some role in the movement of fungal Golgi. The distribution and movement of fungal Golgi is clearly related to polarity.
26

Chemical investigation of phytoalexins and phytoanticipins : isolation, synthesis and antifungal activity

Sarwar, Md Golam 03 August 2007 (has links)
The focus of my research was on the secondary metabolites produced by crucifer plants under stress and their biological activity against fungi. Both cultivated and wild plants were investigated to isolate phytoalexins and phytoanticipins, and determine their metabolite profiles.<p>The first chapter of this thesis describes cruciferous plants and their most important pathogenic fungi. These plants are divided into three groups: oilseeds, vegetables and wild species. The metabolites isolated from these plants and their biosynthetic studies are reviewed. In addition economically important necrotrophic fungi such as <i>Leptosphaeria maculans</i>, <i>Alternaria brassicae</i>, <i>Sclerotinia sclerotiorum</i> and <i>Rhizoctonia solani</i> are also reviewed along with their phytotoxins. <p>The second chapter of this thesis describes the detection, isolation, structure determination, syntheses of stress metabolites and biological activity of these metabolites against <i>L. maculans</i>, <i>S. sclerotiorum</i> and <i>R. solani</i>. The investigation of cauliflower led to the isolation of seven phytoalexins: 1-methoxybrassitin (55), spirobrassinin (71), isalexin (64), brassicanal C (60), caulilexins A (106), B (107), and C (105). The phytoalexins caulilexins A (106), B (107) and C (105) were reported for the first time. Caulilexin A (106), having a disulfide bridge, showed the highest activity against S. sclerotiorum and R. solani among the known phytoalexins. Similarly four phytoalexins: 1-methoxybrassitin, brussalexins A (121), B (117) and C (118) along with four metabolites: ascorbigen (51), diindolylmethane (50), 1-methoxy-3,3-diindolylmethane (119) and di-(1-methoxy-3-indolyl)methane (120) were isolated from Brussels sprouts. The phytoalexins brussalexins A (121), B (117) and C (118) are new metabolites. Brussalexin A (121) is the only cruciferous phytoalexins having an allyl thiolcarbamate functional group. The metabolite 1-methoxy-3,3-diindolylmethane (119) is reported for the first time.<p>The investigation of brown mustard for polar metabolites led to the isolation of indole-3-acetonitrile (76) and spirobrassinin (71) along with isorhamnetin-3,7-diglucoside (134). Investigation of wild species such as Asian mustard, sand rocket, wallrocket, hedge mustard and Abyssinian mustard for production of stress metabolites led to the isolation of indole-3-acetonitrile (76), arvelexin (84), 1,4-dimethoxyindole-3-acetonitrile (137), rapalexins A (138) and B (142), methyl-1-methoxyindole-3-carboxylate (59) and metabolites bis(4-isothiocyanotobutyl)-disulfide (139), 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) and 3-(methylsulfinyl)-propylisothiocyanate (135). <p>Two metabolites were also isolated from Brussels sprouts and brown mustard; however, these structures are not yet determined. The metabolites 1,4-dimethoxyindole-3-acetonitrile (137) and 5-(3-isothiocyanato-propylsulfanyl)-pentylisothiocyanate (136) are reported for the first time.
27

Growing Cole Crops in Arizona

Pew, W. D. 05 1900 (has links)
This item was digitized as part of the Million Books Project led by Carnegie Mellon University and supported by grants from the National Science Foundation (NSF). Cornell University coordinated the participation of land-grant and agricultural libraries in providing historical agricultural information for the digitization project; the University of Arizona Libraries, the College of Agriculture and Life Sciences, and the Office of Arid Lands Studies collaborated in the selection and provision of material for the digitization project.
28

Nitrogen Assimilation-Metabolism in Relation to Potassium Use in Cauliflower (Brassica oleracea var. botrytis)

Huang, Ruiping 25 November 2010 (has links)
A field trial and a greenhouse experiment were conducted to investigate the impacts of N and K nutrients on plant N/K assimilation, nitrate reductase activity (NRA), curd yield and quality of cauliflower cv. ‘Minuteman’. In the field study the treatments consisted of five N rates (0, 55, 110, 165 and 220 kg/ha) and three K rates (0, 25 and 50 kg/ha). In the greenhouse study the treatments were five levels of N (0, 16.5, 33, 50 and 66.5 mg/plant/day) using a modified Hoagland nutrition solution. In the field study the interaction of N/K rates was significant in cauliflower whole plant N/K uptake. Head N/K accumulation was 32-35% of plant total N/K uptake (8.0 g/plant), which was significantly correlated with head yield and size (P<0.05). Cauliflower NRA was associated with leaf/head sap NO3-N concentrations. It is suggested that nitrogen and potassium translocation is an important factor of cauliflower yield and quality.
29

Air-Assisted Electrostatic Application of Pyrethrois and Endosulfan Mixtures for Sweetpotato Whitefly Control and Spray Deposition in Cauliflower

Palumbo, John, Coates, Wayne 08 1900 (has links)
Pyrethroid and endosulfan mixtures applied at full and reduced rates with three application methods (air-assisted electrostatic, air-assisted hydraulic, and standard hydraulic sprayers) were evaluated in field studies in 1992 and 1993 for control of sweetpotato whitefly, Bemisia tabaci-strain B (Genn.), also known as silverleaf whitefly, Bemisia argentifolii Bellows and Perring, and spray deposition on caulker, Brassica oleracea L. Based on adult suppression, improved control of whiteflies was achieved with full and reduced rates of the air-assisted electrostatic sprayer following two applications in 1992, but percent reduction of adults did not differ significantly among the application methods when full rates of insecticide were applied in 1993. Control based on immature colonization indicated that the air-assisted electrostatic sprayer was the only spray method to significantly reduce nymph densities when compared with the control in 1992, but differences in numbers of eggs, nymphs and eclosed pupal cases varied among application methods and rates of active ingredient in 1993. Comparisons of cauliflower harvest dates indicated that the air -assisted electrostatic sprayer did not provide significantly better control than the other application methods when used at similar rates. Spray deposition with the air-assisted electrostatic application technique was variable throughout these studies with no clear trends being observed. Our results suggest the air-assisted electrostatic sprayer may offer a means to control sweetpotato whitefly with a 50% reduction in insecticide usage.
30

Etude des mécanismes cellulaires de la transmission du Cauliflower Mosaic Virus / Cellular mechanisms of Cauliflower Mosaic Virus transmission

Bak, Aurélie 13 December 2013 (has links)
La majorité des phytovirus utilise des vecteurs pour être transmis d'une plante à une autre, et les pucerons sont de loin les vecteurs les plus importants. Alors que les interactions moléculaires entre le virus et son vecteur font l'objet de nombreuses études, les phénomènes intracellulaires qui précèdent l'acquisition du virus par le vecteur dans la cellule végétale ont été peu étudiés. Le Cauliflower mosaic virus (CaMV), développe dans les cellules de la plante hôte une structure spécialisée et indispensable à la transmission : le corps à transmission ou CT. Le CT contient la protéine P2 qui est essentielle à la transmission car elle constitue un lien entre la particule virale et un récepteur localisé au niveau de la pointe des stylets de l'insecte. Les particules virales, quant à elles, sont massivement stockées dans un autre type de corps d'inclusion: les usines virales. Cette localisation différentielle des composants majeurs du complexe transmissible implique qu'un mécanisme réunisse P2 et les particules virales lors de l'acquisition, c'est-à-dire au moment des piqûres tests du vecteur dans les cellules du parenchyme.Au cours de ma thèse, nous nous sommes focalisés sur les événements cellulaires qui se produisent lors de l'acquisition du CaMV par le puceron. Les résultats montrent que la piqûre du puceron est un stimulus qui déclenche deux événements : 1. le CT se désintègre quasi instantanément et la P2 qu'il contient est relocalisée sur les microtubules dans toute la cellule ; 2. en parallèle, les usines virales libèrent des particules virales, qui se distribuent sur le réseau microtubulaire, en s'associant à la protéine P2. Ainsi, un très grand nombre de complexes transmissibles se forment dans une configuration facilement accessible au vecteur partout dans le cytoplasme. De manière surprenante, ce remaniement des composants viraux au sein de la cellule est totalement réversible : P2 reforme un CT, et les particules virales sont ré-absorbées par les usines virales ; l'ensemble est ainsi disponible pour un nouveau « cycle d'acquisition ».Ces résultats indiquent que le CaMV manipule l'hôte au travers de corps d'inclusion aux fonctions multiples qui i) permettent la « perception du puceron » par le virus, et ii) mettent en œuvre une réponse immédiate qui favorise les chances d'acquisition du virus. Ces résultats supposent que le CaMV détourne une ou des voies de perception et transduction du « signal puceron » de la plante. Nous avons initié la caractérisation de cette/ces voies de signalisation par plusieurs approches, dont les résultats préliminaires sont présentés en détail. / To be efficiently spread, many plant viruses use insect vectors and the most common vectors are aphids. Molecular interactions between viruses and their vectors are the object of many studies, whereas transmission-related intracellular phenomena occuring in the host cell before the virus acquisition are poorly understood and rarely addressed. Cauliflower mosaic virus (CaMV) forms in infected cells a structure specialized for transmission: the transmission body or TB. The TB contains the protein P2 which is essential for virus transmission because P2 acts as a molecular linker and binds the virus particle to the stylet receptor. Virus particles are massively sequestered in other inclusion bodies: the virus factories or VF. This differential distribution of P2 and virus particles forces the vector to reunite them during feeding activity by mobilzing P2 from TB and virus particles from VF.During my thesis, we solved this mystery and uncovered an intriguing phenomenon: the TB disrupts at the moment where aphids insert their stylets into the tissue, and all P2 redistributes onto cortical microtubules throughout the cell. Simultaneously, some virus particles are exported from virus factories and recruited onto microtubules together with P2. In this configuration, P2 and virus particles are brought close together and in addition they are distributed homogeneously over the entire cell. This enables efficient acquisition by the vector and hence transmission even after short probing. Remarkably, this phenomenon is reversible and TB reforms after vector departure to be ready for a second round of transmission. These results prove that CaMV interferes with the very early plant-aphid interactions to organize transmission. Our findings suggest that plants perceive aphid activity from the moment of stylet insertion. The mechanistic details behind the TB and VF reactions are unknown and we have begun unravelling them with different approach which will be presented.

Page generated in 0.0459 seconds