Spelling suggestions: "subject:"cavitadas.""
1 |
A Computational Study of Procyanidin Binding to Histatin 5 and Thermodynamic Properties of Hofmeister-Anion Binding to a Hydrophobic CavitandShraberg, Joshua 18 December 2014 (has links)
Various studies suggest tannins act as antioxidants, anticarcinogens, cardio-protectants, anti-inflammatory agents, and antimicrobials. However, more investigation is needed to examine the bioavailability of tannins. Tannins bind to salivary peptides by hydrophilic and hydrophobic mechanisms. Electrospray Ionization Mass Spectrometry (ESI-MS) has been used to assess both hydrophilic and hydrophobic components of protein complexes. ESI-MS could potentially be an effective tool for screening the bioavailability of tannins. Weaker binding tannins are predicted to be more highly absorbed by the body, and should therefore exhibit greater bioavailability. Rannulu and Cole have used ESI-MS to measure binding affinities of procyanidin tannin stereoisomers for salivary peptides in aqueous solution. The condensed tannins procyanidin B1, B2, B3, and B4 demonstrated significantly different binding affinities (binding strengths) for the Histatin 5 salivary peptide. The procyanidin-Histatin 5 binding mechanisms in the ESI-MS experiments by Rannulu and Cole were investigated using the FRED docking program combined with molecular dynamics optimization in the AMBER software suite. The simulations suggest residual liquid-phase binding interactions in procyanidin-Histatin 5 complexes are maintained in the gas phase under conditions resembling those in ESI-MS experiments, though the gas-phase interaction energies were enhanced. Increased hydrogen bonding and decreased π-π stacking interactions were also detected in gas versus liquid-phase procyanidin-Histatin 5 complexes. In addition, simulation results suggest multiple conformations of procyanidins bind Histatin 5 at several sites and procyanidin binding does not fix the Histatin 5 peptide backbone. The simulations agree with previous studies which indicate aromatic Histatin 5 residues are responsible for procyanidin-Histatin 5 binding and tannins can bind salivary peptides in multiple conformations.
The effects of Hofmeister salts on complexation of an amphiphilic guest adamantane carboxylic acid to the hydrophobic surface of a deep-cavity cavitand have been investigated by Gibb et al. Adamantane-cavitand binding was found to be largely enthalpically driven, though adamantane binding in the presence of the salting-in anions perchlorate and thiocyanate was entropically driven. Gibb et al. also found that perchlorate-cavitand binding was enthalpically favorable, though entropically unfavorable. Potential-of-mean-force (PMF) calculations for perchlorate-cavitand and thiocyanate-cavitand complexation were performed using umbrella sampling with a modified version of the sander module from the Amber 9 software suite to further investigate the thermodynamic properties of Hofmeister-anion binding to the hydrophobic cavitand. The enthalpy for salting-in anion-cavitand complexation was calculated from the potential energy difference between the bound and unbound state (the potential energy of binding) along with the entropy. The binding entropy and enthalpy were also calculated using a finite difference approximation to the entropy. The enthalpy for perchlorate-cavitand complexation calculated from the binding energy and the finite difference approximation to the entropy was favorable with an unfavorable entropy. The binding enthalpy and entropy for thiocyanate-cavitand complexation calculated from the binding energy and finite difference approximation to the entropy were unfavorable and favorable, respectively, perhaps due to a classical hydrophobic effect. The orientation of the ligand, the number of water molecules displaced from the ligand and cavitand upon complexation, and the number of nearest-neighbor atom contacts between the ligand and the cavitand were also calculated. Additionally, the energetics of various interactions involved in salting-in anion-cavitand complexation including the anion-cavitand, anion-water, cavitand-water, and water-water interactions were assessed, though the data were inconclusive.
|
2 |
Spatially Directional Resorcin[4]arene Cavitand Glycoconjugates for Organic Catalysis in Aqueous MediaHusain, Ali Husain 27 June 2016 (has links)
Resorcin[4]arenes and their rigid structures “cavitands” offer a unique molecular structure scaffolds suitable for attaching and orienting multi-ligands on their upper rims. Their remarkable structure properties, the relative ease of chemical modification on their either rims or through the multiple phenolic hydroxyl (-OH) groups, manipulating their cavity size and the role of spatial directionality provided by their cores, led synthetic chemist to explore their utilities in the synthesis of valuable resorcin[4]arene/cavitand assemblies with wide range of applications in many research areas such as supramolecular chemistry, host-guest chemistry, glycoconjugates, polymer chemistry, host-guest chemistry, micro-reactors in chemical catalysis and others. In particular, in the field of glycoconjugates, the synthesis of multi-directional glycoresorcin[4]arenes have found valuable uses in glycobiology, i.e. lectins and cells recognitions. Recently, the spatial directionality of β-D-glucopyranoside based on the resorcin[4]arene rigid structure “cavitand” was first described by our group in the synthesis of resorcin[4]arene cavitand glycoconjugates (RCGs). The efficacy of RCGs was established as phase catalysts in order to evaluate their abilities catalyzing different organic transformations in aqueous environment as a green approach in organic syntheses. RCGs showed a variety of advantages such as low catalytic loading and faster conversions for water-insoluble hydrophobic substrates in aqueous media.
This dissertation consists of four chapters. Chapter 1 describes the design and the synthesis of a family of spatially directional resorcin[4]arene cavitand glycoconjugates (RCGs) by coupling β-D-glucopyranose moieties on the resorcin[4]arene cavitand upper rims via multiple 1,4-disubstituted 1,2,3-triazolethe linkages achieved from the well-known click reaction, the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). The multiple directional β-D-glucopyranoside units on the cavitand cores are capable of multiple H-bond interactions resulting in a significant molecular host system, i.e. “pseudo-saccharide cavity” capable of accommodating different guest molecules, especially hydrophobic organic species, in aqueous environment raising the advantages of these amphiphilies for appreciable applications as molecular vessels and micro-reactors in an ideal atmosphere “water”.
In Chapter 2, the utility of RCGs as efficient phase transfer catalysts for thiocyanation and thiazole formation in water is described. The catalytic activity (1 mol% loading) of RCGs enhancing the formation of both thiocyanate and thioazole species in aqueous media is a direct evidence of their capability acting as micro-reactors in water. Also, the recoverability and the reusability of RCGs for thiocyanation and thizaole formation have been examined. Additionally, the influence of the flexibility/rigidity and the orientation of the multiple β-D-glucopyranose moieties on the RCGs’ catalytic efficciency in thiocyanation and thiazole formation has been investigated.
In Chapter 3, the design and the synthesis of an octopus-like structure resorcin[4]arene glycoconjugate (RG) is described. RG consists of eight β-D-glucopyranoside units attached to a flexible open system resorcin[4]arene core. The flexibility of the resorcin[4]arene assembly and the presence of the multiple β-D-glucopyranosides provides a wider-type of pseudo-saccharide bucket capable of encapsulating larger molecules in aqueous environment. RG was evaluated for catalyzing the CuAAC in water without the use of any added organic solvent. RG was remarkably efficient in catalyzing the CuAAC reactions in aqueous atmosphere for a variety of small/bulky and hydrophilic/hydrophobic azido and alkyne substrates.
In Chapter 4, the construction of resorcin[4]arene cavitand based-carcerands (RCCs) via tandem CuAAC reactions is described. The CuAAC reaction was utilized as an efficient coupling method for the complimentary azido- and alkyne-cavitand halves via multiple 1,4-disubstituted 1,2,3-triazole linkers. Unlike the most reports of covalently linked carcerand synthesis, which are accomplished at very dilute concentration, the fast kinetics of the CuAAC reaction enabled carcerand synthesis at much higher concentration and in high yield.
|
3 |
Développement d'une chimie hôte-invité pour la valorisation du CO2 via une catalyse éco-compatible / Development of a host-guest chemistry for the valorization of CO2 through an eco-compatible catalysisMirabaud, Anaïs 08 December 2015 (has links)
Le développement de procédés catalytiques pour la valorisation chimique du dioxyde de carbone (CO2), suscite un intérêt grandissant en termes de chimie du carbone et de développement durable. Les travaux de cette thèse portent sur l’étude de la synthèse de carbonates cycliques à partir du couplage du CO2 avec des époxydes. De nombreux catalyseurs ont été développés dont les sels d’ammoniums fournissant le nucléophile nécessaire pour initier la réaction par ouverture de l’époxyde. Notre projet propose une nouvelle approche qui consiste à augmenter la nucléophilicité du catalyseur via une chimie hôte-invité dans laquelle des récepteurs moléculaires de type cavitands viennent sélectivement encapsuler les cations ammoniums, libérant ainsi l’anion nucléophile pour une meilleure réactivité. Notre système catalytique, testé à 1 bar de CO2, a notamment démontré tout son potentiel par l’activation accrue de sels de tétraméthylammonium initialement inactifs. Des expériences effectuées sous une pression de CO2 de 10 bar, ont permis d'étudier l’influence de la structure des cavitands et de montrer qu’une double activation était possible grâce à la conception de cavitands comportant des fonctions acides de Brönsted et des propriétés d’encapsulation optimales. Une application à la catalyse hétérogène a finalement été initiée par l’immobilisation des ammoniums ou des cavitands sur des supports à base de silice pour profiter des avantages de tels procédés. / The utilization of carbon dioxide (CO2) as a key component in organic transformations has recently drawn much attention as a greener alternative to fossil fuel based resources. The objectives of this work aim at studying the synthesis of cyclic carbonates from the coupling of CO2 with epoxide. Numerous catalysts have been proposed for this reaction among which the ammonium halides providing the nucleophile to initiate the reaction by opening the epoxide. Herein, we propose a new approach based on host-guest chemistry, to improve catalytic reactivity by increasing the nucleophilicity of the halide anion. For this purpose, cavitand molecular receptors able to bind quaternary ammonium ions are used, releasing the anionic nucleophile for the initial epoxide ring-opening reaction. At CO2 atmospheric pressure, our catalytic systems demonstrated a great potential by the dramatic activation of tetramethylammonium halides, whereas when used alone, these catalysts had never shown any activity. The influence of the cavitand structure was investigated through experiments run under 10 bar of CO2 pressure, and revealed that a double activation was possible with cavitand bearing Brönsted acidic hydroxyl functions and optimal recognition properties. The heterogeneization of such catalytic systems was finally studied with the grafting of either ammoniums or cavitands on silica based materials.
|
4 |
Synthesis and host-guest interaction of cage-annulated podands, crown ethers, cryptands, cavitands and non-cage-annulated cryptands.Chen, Zhibing 05 1900 (has links)
Symmetrical cage-annulated podands were synthesized via highly efficient synthetic strategies. Mechanisms to account for the key reaction steps in the syntheses are proposed; the proposed mechanisms receive support from the intermediates that have been isolated and characterized.
An unusual complexation-promoted elimination reaction was studied, and a mechanism is proposed to account for the course of this reaction. This unusual elimination may generalized to other rigid systems and thus may extend our understanding of the role played by the host molecules in "cation-capture, anion-activation" via complexation with guest molecules. Thus, host-guest interaction serves not only to activate the anion but also may activate the leaving groups that participate in the complexation.
Complexation-promoted elimination provides a convenient method to desymmetrize the cage while avoiding protection/deprotection steps. In addition, it offers a convenient method to prepare a chiral cage spacer by introducing 10 chiral centers into the host system in a single synthetic step.
Cage-annulated monocyclic hosts that contain a cage-butylenoxy spacer were synthesized. Comparison of their metal ion complexation behavior as revealed by the results of electrospray ionization mass spectrometry (ESI-MS), alkali metal picrate extraction, and pseudohydroxide extraction with those displayed by the corresponding hosts that contain cage-ethylenoxy or cage-propylenoxy spacers reveals the effect of the length of the cage spacer upon the host-guest behavior. A series of cage-annulated cryptands, cavitands and the corresponding non-cage-annulated model compounds have been synthesized. These host molecules display unusual behavior when examined by using ESI-MS techniques, i.e., they bind selectively to smaller alkali metal ions (i.e., Li+ and Na+), a result that deviates significantly from expectations based solely upon consideration of the size-fit principle. It seems likely that this behavior results from the effect of the host topology on host-guest behavior. A series of non-cage-annulated cryptands also have been synthesized. These compounds can serve as starting materials for cavitand construction.
|
5 |
Synthesis of Functionalized Resorcin[4]arene via Click ChemistryHusain, Ali 19 October 2010 (has links)
Click chemistry is a very powerful chemical strategy that overcome carbon-carbon bond with carbon-heteroatom bond by joining small units with heteroatom links (C-X-C) using spring-loaded reactants. The Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition is a major example based on the click chemistry philosophy. This method was used for the last 10 years to join different functional groups, carbohydrates, aminoacids, polymers to calix[4]arene and resorcin[4]arene cavitands by a stable 1,2,3-triazole linkages.
Herein I describe our interest in this type of click chemistry reaction in the synthesis of dimeric capsules resorcin[4]arene via four 1,2,3-triazole linkages. Two different resorcin[4]arene derivatives were synthesized in which four azide and four alkyne functional groups were attached on the upper rim of two different resorcin[4]arenes. The dimerization reaction was quite challenging due to steric factors. Each resorcin[4]arene derivative was then studied individually via click chemistry and all click reaction results were excellent and the products were isolated in good yields. These results enhanced the synthesis of the dimeric resorcin[4]arene.
|
6 |
Synthesis of Molecular Baskets and Introduction of Inward Facing FunctionalityLaughery, Zachary 20 January 2006 (has links)
As a first step to producing a shape selective catalysts or enzyme mimic, two preorganized host molecules were synthesized. Binding studies of the two hosts with a variety of guests in three solvents demonstrated that an important driving force in the association was the formation of C-H???X-R hydrogen bonds (X = halogen). A deuterated host was utilized to further examine the formation of the C-H???X-R hydrogen bonds. In an effort to place functionality in the hydrophobic pocket of these hosts, two methods were developed. The first utilized directed ortho metallation to place electrophiles above and/or directed into the cavity. Perlithiation of the host could lead to sixty-nine products but reaction conditions and host rigidity limited product formation. This reaction technique led to the placement of carboxylic acid groups onto the host and the isolation of twelve products. Two different positions of the carboxylic acids (endoand exo-) direct the orientation of the guest. 1D- and 2D-NMR were utilized to examine how the was orientated inside the host. The second method employed to place functionality on the host, sited a tripodal zinc binding ligand on the side of the hydrophobic pocket of the host. The synthesized host was able to bind zinc strongly and in a 1:1 manner.
|
7 |
Water-Soluble Deep-Cavity Cavitands: Synthesis, Molecular Recognition, and Interactions with Phospholipid MembranesIoup, Sarah E 15 December 2012 (has links)
Water-soluble deep-cavity cavitands provide a rare opportunity to study self-assembly driven by the hydrophobic effect. These molecular hosts dimerize in the presence of certain guest molecules to form water-soluble molecular capsules. These systems have given rise to numerous novel chemical phenomena and have potential use in drug delivery. The host octaacid (OA) has been particularly well-characterized, but studies are limited to basic pH because of limited host solubility.
Herein we report an improved synthesis of OA and the syntheses of three new water-soluble deep-cavity cavitands. The new hosts are soluble at neutral pH, increasing relevance for biological studies. The new syntheses are versatile enough to apply to the synthesis of additional water- soluble cavitands in the future. We also describe preliminary characterization of the molecular recognition properties of the new hosts. Binding of organic guest molecules to form 1:1 host:guest complexes and 2:1 host:guest capsules was qualitatively similar to that of OA. However, binding of anions spanning the Hofmeister series revealed interesting new behavior. The new hosts bound a wider range of anions inside the hydrophobic pocket with much higher association constants. Moreover, external binding of several anions to the cavitand pendant feet was observed.
Looking towards biological applications, we desired to learn how these molecules interact with phospholipid membranes. Six water-soluble cavitands were tested for their ability to permeabilize liposomal POPC membranes. One host showed very high potency in permeabilizing membranes, while three other hosts showed moderate activity. Host binding of POPC was found to be at least one factor in host-induced permeabilization. A requenching assay to determine leakage mechanism strongly supported all-or-none leakage, whereby some vesicles lose all contents while others lose none. These results suggest that these cavitands induce partial transient leakage of vesicles by the formation of transient membrane pores. These findings show potential for the use of these hosts as drug delivery carriers, antimicrobial compounds, and tools in membrane alteration studies.
|
8 |
Functionalization of Resorcinarenes and Study of Antimicrobial ActivityMuppalla, Kirankirti 21 May 2001 (has links)
Cavitands are very important class of compounds in supramolecular chemistry. These molecules contain rigid enforced cavity,and have attracted considerable attention in supramolecular chemistry as building blocks for the construction of carcerands, hemicarcerands, and other host guests complexes. Nearly 40 years ago, Niederl and Vogel laid foundation for the study of such type of condensation reactions. In our laboratory we are involved in synthesis of resorcinarenes with readily available substrates such as resorcinol and aldehydes to form a cyclic tetramer.
Herein, I present detailed studies about the functionalization of the synthesized tetramers and their antimicrobial activity. Octahydroxy resorcinarenes were synthesized and perallylated which served as acyclic diene precursors for ring closing metathesis reaction. Studies were carried out to see effect of C-2 substituent of resorcinol and effect of aryl substituents, and aliphatic substituents on ring closing metathesis. This thesis describes the synthesis of bridged resorcinarenes and study of antimicrobial activity of resorcinarenes.
|
9 |
A novel approach to manipulate cavity size In resorcinarenesParulekar, Sumedh 01 June 2006 (has links)
Intramolecular ring closing metathesis in the presence of Grubbs' catalyst has been used as an efficient approach to synthesize bridged resorcinarenes. Octaallyl cavitands may undergo conformational changes; however bridge formation by RCM of the allyl groups gives a rigid, enforced, concave cavity capable of holding neutral molecules. This is the first report describing tandem formation of the four bridges on the upper rim of resorcinarenes. Structures of bridged resorcinarenes are confirmed by spectral analysis data.This report also describes the synthesis of polyhydroxy resorcinarenes, which have been used as metal complexing agents, sensors, receptors, molecular reaction vessels and catalytic chambers. They are able to encapsulate small neutral molecules, drug molecules inside the cavity. Such cavitands offer unique molecular platforms for host--guest chemistries, as well as new polymers and self-assembled systems.
|
10 |
Separation of Perrhenate and Perfluoroalkyl Substances by Ion Chromatography with Customized Stationary PhasesChan, Wai Ning 16 August 2023 (has links) (PDF)
Ion exchange chromatography (IC) is an analytical technique used to separate charged molecules including ions, proteins, small nucleotides, and amino acids. It can function in anion or cation mode. In this dissertation, anion exchange chromatography was used, and column materials were made in our lab with resorcinarene-based compounds called cavitands. Cavitands create cavities to bind to molecules because of their three-dimensional structure. Two new gradient IC methods were established to identify and quantify perrhenate and perfluoroalkyl substances (PFAS) by customized resorcinarene-based column, zinc cyclen resoecinarene (ZCR) and arginine methyl ester (RUE) columns. The ZCR column accomplished outstanding separation of perrhenate from other anions such as chloride and sulfate by using a gradient elution of 2-60 mM NaOH. There was a logarithmic relationship between the perrhenate concentration and its retention time. In addition to separating anions, the ZCR column was able to preconcentrate perrhenate with over 90% recovery in different conditions. RUE was successfully synthesized and attached to polystyrene resin and used in IC to separate the PFAS, perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluorohexanesulphonic acid (PFHxS), and perfluorooctanoic acid (PFOA). The sample preparation for the PFAS was simple and only needed filtration. A gradient method starting with 70 mM NaOH and going to pure water was necessary to separate the PFAS. There was no detectable PFAS in Provo tap water and Utah Lake water by our method. Although the LOD and LOQ of PFAS were not as low as the existing methods, the IC method does not require complicated sample preparation steps to separate and quantify PFAS. Binding studies of RUE and RUA were done with organic acids, including citric, malic, and succinic acid, and PFAS including PFBA, and PFHxA. The strongest binding was for L-malic acid followed by succinic acid, D-malic acid, pentanoic acid, citric acid, and dimethyl L-malate. RUE displayed some chiral recognition between L-malic acid and D-malic acid. Unfortunately, it did not show significant differences in binding between the different PFAS even though RUE had been able to separate them by IC.
|
Page generated in 0.0918 seconds