• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 10
  • 8
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 53
  • 26
  • 18
  • 15
  • 11
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Applying single-molecule localisation microscopy to achieve virtual optical sectioning and study T-cell activation

Palayret, Matthieu Grégoire Simon January 2015 (has links)
Single-molecule localisation microscopy (SMLM) allows imaging of fluorescently-tagged proteins in live cells with a precision well below that of the diffraction limit. As a single-molecule technique, it has also introduced a new quantitative approach to fluorescence microscopy. In the Part A of this thesis, the design and building of three SMLM instruments, the implementation of a custom-developed image analysis package and the characterisation of the photo-physical properties of the photo-activable fluorescent protein used in this thesis (mEos), are discussed. Then, a new post-processing method for SMLM analysis is characterised: axial optical sectioning of SMLM images is demonstrated by thresholding fitted localisations using their fitted width and amplitude to reject fluorophores that emit from above or below a virtual ?light-sheet?, a thin volume centred on the focal plane of the microscope. This method provides qualitative and quantitative improvements to SMLM. In the Part B of this thesis, SMLM is applied to study T cell activation. Although the T cell receptor plays a key role in immunity, its stoichiometry in the membrane of resting T cells is still a matter of debate. Here, single-molecule counting methods are implemented to compare the stoichiometry of TCRs fused with mEos2 in resting T cells to monomeric and dimeric controls. However, because of the stochasticity of mEos2 photo-physics, results are inconclusive and new counting techniques based on structural imaging are discussed. In addition to TCR triggering, T cells require the co-stimulatory triggering of the CD28 transmembrane receptor to become fully activated. However, some immobilised anti-CD28 antibodies, referred to as super-agonists (SA), can directly activate T cells without triggering the TCR. In this thesis, single-molecule tracking techniques are used to investigate the molecular mechanism of CD28 super-agonism in live T cells. The results indicate that the diffusion of CD28 is slowed by SA binding. This effect is further discussed in light of the kinetic-segregation model proposed for TCR triggering. Quantitative SMLM as implemented and further developed in this work offers new tools to investigate the molecular mechanisms initiating T cell activation, ultimately facilitating the discovery of novel approaches to target these pathways for therapeutic purposes.
52

Effet de l'exposition à la fumée de cigarette sur le profil oxydatif et la sénescence des différentes sous-populations lymphocytaires T CD4+ / Analysis of the response to oxydative stress by lymphocytes T conventional and treg

Baskara-Yhuellou, Indoumady 20 December 2013 (has links)
La Broncho-Pneumopathie Chronique Obstructive (BPCO) est caractérisée par une destruction du parenchyme pulmonaire, une obstruction des voies aériennes et une réponse inflammatoire anormale en réponse à un stress oxydant chronique lié au tabagisme. L’incidence accrue de la maladie chez les personnes âgées fait postuler que la sénescence cellulaire pourrait contribuer à la pathogenèse de la maladie. Une augmentation des marqueurs de stress oxydant et de sénescence est détectée dans le poumon des patients atteints de BCPO, associée à une diminution des lymphocytes T régulateurs (Treg : CD4+CD25highCD127-/low) et une augmentation d’une sous-population pro-inflammatoire Th17 (Th17 : CD45RO+CCR6+) parmi les lymphocytes T conventionnels (Tconv : CD4+CD127+) pulmonaires, alors que la fréquence des Treg est augmentée en périphérie. Différents marqueurs d’immunosénescence sont présents dans le sang périphérique des patients atteints de BPCO : raccourcissement des télomères des leucocytes, augmentation de la fréquence des lymphocytes T sénescents CD8+CD28- et CD4+CD28- ainsi que des CD4+CD57+. Cependant, le rôle causal d’une altération de la réponse au stress oxydant dans les anomalies et la sénescence des cellules immunes associées à la BPCO n’est pas établi / The Chronic obstructive pulmonary disease ( BPCO) is characterized by a destruction of the lung parenchyme, an obstruction of air traffics and an abnormal inflammatory answer in answer to an oxidizing stress chronicles smoking-related. The greater incidence of the disease at the elderly makes postulate(apply) that the cellular senescence could contribute to the pathogenesis of the disease
53

CD4+ T Cell Responses: A Complex Network of Activating and Tolerizing Signals as Revealed by Gene Expression Analysis: A Dissertation

Brown, David Spaulding 20 September 2005 (has links)
Immunologic self-tolerance is maintained by both central and peripheral mechanisms. Furthermore, regulation of mature lymphocyte responses is governed by inhibitory as well as stimulatory signals. TCR recognition of cognate peptide bound to MHC molecules provides the initial stimulus leading to T lymphocyte activation and determines the antigen specificity of any subsequent response. However, lymphocytes must discriminate between foreign and self antigens presented by self-MHC molecules to maintain self tolerance and avoid pathological autoimmunity. Consequently, TCR ligation alone is reported to result in abortive activation, T cell anergy, apoptosis, and tolerance. Under normal physiological conditions, costimulatory signals modify lymphocyte responsiveness to TCR ligation to prevent autoimmunity while enabling robust responses to foreign antigen. Members of the CD28/B7 superfamily provide the critical secondary signals essential for normal immune cell function. CD28 is an essential positive costimulatory molecule with critical functions in thymic development, lineage commitment, and regulation of peripheral lymphocyte responses to antigenic stimuli. CD28 ligation by APC-expressed B7 molecules alters proximal signaling events subsequent to MHC/TCR interactions, and initiates unique signaling pathways that alter mRNA stability and gene transcription. Furthermore, CD28 signaling is required for regulatory T cell development and function. Thus, CD28 has a central role in both potentiating lymphocyte activation mediated by TCR engagement and regulating peripheral tolerance. In contrast, Ctla-4 mediates an inhibitory signal upon binding B7 molecules on an antigen-presenting cell. Its importance in governing lymphocyte responses is manifested in the fatal lymphoproliferative disorder seen in Ctla-4-/- mice. The lymphocyte proliferation is polyclonal, antigen and CD28 dependent, and arises from defects in peripheral CD4+T cell regulation. The high percentage of peripheral T lymphocytes expressing activation markers is accompanied by lymphocyte infiltration into numerous non-lymphoid tissues and results in death by 3-4 weeks. While still controversial, Ctla-4 signaling has been reported to be essential for induction of peripheral T lymphocyte tolerance in vivo and in some model systems is proposed to regulate both T lymphocyte anergy induction and the immune suppressive effects of some regulatory T cells in the prevention of autoimmunity. Signaling pathways activated by TCR ligation and CD28 costimulation have been extensively characterized. In contrast, the mechanisms mediating Ctla-4 maintenance of tolerance remain largely unknown. Ctla-4 gene expression is tightly controlled during T cell development and activation, and its intracellular localization and expression on the cell surface is regulated by numerous pathways and intermediates. While a tailless Ctla-4 mutant is capable of inhibiting T cell activation, recent studies have shown that a ligand independent form of Ctla-4 is also capable of providing an inhibitory signal to T lymphocytes. In conjunction with the strictly controlled expression kinetics and the perfect amino acid homology between the intracellular domains of mouse and human Ctla-4, this data suggests that Ctla-4 may participate in the modulation or initiation of intracellular signaling pathways. Positive and negative costimulatory receptors on the T cell modify lymphocyte responses by altering both quantitative and qualitative aspects of the lymphocyte response including threshold of activation, cytokine secretion, and memory responses. Positive costimulation augments T cell responses, in part, by downregulating the expression of genes that actively maintain the quiescent phenotype. This study was initiated to determine the role of Ctla-4 ligation in modifying the global gene expression profile of stimulated T cells and to determine if the Ctla-4 mediated maintenance of T cell tolerance was achieved, in part, by altering the transcription of quiescence genes necessary for the prevention of T cell activation subsequent to TCR and CD28 stimulation. Previous studies investigating the influence of Ctla-4 ligation on transcriptional profiles of activated lymphocytes detected only quantitative alterations in the transcriptional regulation initiated by CD28 signaling. In contrast, our data suggests that quantitative effects of Ctla-4 ligation that differentially influence pathways acting downstream of stimulatory receptors results in a stable and qualitatively unique phenotype detectable at the level of the transcriptome. Thus, the cumulative effect of Ctla-4 signaling is unique and not constrained to reversing alterations in expression initiated by CD28. In addition, Ctla-4 ligation can be shown to influence T lymphocyte responsiveness and the resulting global expression profile within 4 hours after stimulation and prior to detectable Ctla-4 surface expression. In a subpopulation of T cells, TCR stimulation activates pathways that result in commitment to activation with 2-6 hours. In contrast, CD28 signaling must be maintained for 12-16 hours to ensure maximal responses at the population level. The period of sensitivity to Ctla-4 inhibition of activation is more constrained and does not extend beyond 12 hours. Together, these data support a potential role for Ctla-4 in modification of the early transcriptional response and may explain various alterations in phenotype resulting from Ctla-4 ligation that have been reported in secondary responses. Identification of genes involved in lymphocyte activation, maintenance of selftolerance, and attenuation of immune responses opens the door to therapeutic manipulation of the pathways implicated. CD28 costimulation results in general amplification of TCR-initiated transcriptional responses, and specifically alters the expression profile of a subset of genes. In contrast, Ctla-4 ligation directly and specifically alters the expression of a select group of genes when ligated, and results in minimal suppression of the global CD28-mediated costimulatory transcriptional response. Ctla-4 regulated genes comprise a heterogeneous family, but include known quiescence factors, transcriptional regulators, and various determinants of cell cycle progression and senescence. The role of Ctla-4 in maintaining self-tolerance indicates that targeted manipulation of these gene products presents a novel therapeutic opportunity, and suggests that the mechanisms involved in Ctla-4-mediated maintenance of peripheral T cell tolerance and regulation of immune responsiveness is more nuanced than previously thought. In addition, this study provides the most comprehensive description of global gene expression during primary lymphocyte activation yet available. The integration of statistical and bioinfomatics analyses with large scale data mining tools identifies genes not previously characterized in lymphocytes and can direct future work by predicting potentially interacting gene products and pathways.

Page generated in 0.0509 seconds