Spelling suggestions: "subject:"cdna""
61 |
Effect of Interleaving and FEC on the throughput of CDMA Unslotted ALOHA System with Adaptive Multiuser ReceiverOkada, Hiraku, Yamazato, Takaya, Katayama, Masaaki 09 1900 (has links)
No description available.
|
62 |
Blind Adaptive Multiuser Detection for Synchronous DS-CDMA SystemHuang, Zhi-Feng 22 June 2000 (has links)
In this thesis, we propose a modified blind adaptive approach to MAI cancellation for synchronous DS-CDMA systems, termed PCMA Approach. It has the same advantage as MOE and CMA of suppressing MAI without the explicit knowledge of interference parameters. We study the effect of arrival and departure of new users to the synchronous blind multiuser receivers, namely MOE and CMA. The perturbation caused by this sudden birth or death of interferers is examined from the viewpoint of the change of the cost function under the noiseless assumption. It is shown that in the vicinity of lock convergence, the changes in the CMA and MOE costs are the same if the perturbation is small enough. But it is also observed that the transient behavior of the CMA detector becomes significantly less robust as the existing number of users approaches the processing gain. To overcome this question of the CMA detector, we employ a projection matrix P that can remove the desired signal from the received signal with other interferers unchanged. Finally its performance has been demonstrated by numerical results in comparison with CMOE, ANMMSE, BAMMSE and Linear MMSE. The proposed receiver can combat MAI, approach the performance of Linear MMSE and have a higher capacity and fast convergence rate for a time-varying user population.
|
63 |
The Improvement of Blind Adaptive Detection for MC-CDMA System in Rayleigh Fading ChannelLai, Ruei-Chin 23 June 2000 (has links)
In mobile radio systems, the bandwidth of spread spectrum signals for CDMA system is very wide. If the bandwidth exceeds the coherence bandwidth of the channel, the signal is transmitted in the frequency-selective channel, and the signal is severely distorted by the multiple propagation paths. Each bandwidth of the signals for Multi-Carrier CDMA system is smaller. If the bandwidth is smaller than the coherence bandwidth of the channel, the channel is said to be frequency-nonselective. Besides, the data rate of Multi-carrier-CDMA is higher than the data rate of CDMA.
If the traditional combing detector is used for Multi-Carrier CDMA system, the channel coefficients have to be estimated first. The error of the estimated channel coefficients will result in the performance of detector degrade. The blind adaptive algorithm doesn
|
64 |
Nonlinear Multiple Narrow-band Interference Cancellation Filtering with Inverse QRD-RLS Algorithm for CDMA SystemChang, Su-hua 06 July 2001 (has links)
The technique of direct-sequence (DS) code division multiple access (CDMA) cellular systems has been the focus of increased attention. In this thesis, the problem of narrow-band interference (NBI) cancellation for the DS-CDMA communication systems is considered. It has been shown that the performance of single NBI cancellation for CDMA systems by using the non-linear filtering approach, the so-called DDK filter or the MDK filter, is superior to the one using the linear filtering approach. The main concern of this thesis is to deal with the multiple NBI cancellation. This may occur in some practical application, for instance, in the 2.4GHz CDMA system, the bluetooth and wireless LAN may exist in the same frequency band with different power ratio.
In this thesis, the nonlinear filtering with fast convergence least square (LS) algorithms, viz., the modified inverse QRD-RLS (IQRD-RLS) and the interior point (IP) LS algorithms, are devised for multiple NBI cancellation in the multi-user CDMA system. In fact, the IQRD-RLS and the IP LS algorithms are known to have better numerical stability and convergence property in the RLS family. Since in the non-linear MDK filter with the IQRD-RLS algorithm, the prediction error £`k,k-1 used in the conventional IQRD-RLS is replaced by the nonlinear function of £l(£`k,k-1), and is defined to as the modified IQRD-RLS algorithm. The merits of the proposed algorithms are verified via computer simulation. We showed that the performance of our proposed algorithms outperformed the one using the conventional nonlinear filtering approach with LMS algorithm, in terms of convergence property and the signal-to-noise ratio improvement (SNRI).
|
65 |
Resource allocation in DS-CDMA systems with side information at the transmitterPeiris, Bemini Hennadige Janath 25 April 2007 (has links)
In a multiuser DS-CDMA system with frequency selectivity, each userâÂÂs spreading
sequence is transmitted through a different channel and the autocorrelation and
the cross correlation properties of the received sequences will not be the same as
that of the transmitted sequences. The best way of designing spreading sequences
for frequency selective channels is to design them at the receiver exploiting the usersâÂÂ
channel characteristics. By doing so, we can show that the designed sequences outperform
single user AWGN performance.
In existing sequence design algorithms for frequency selective channels, the design
is done in the time domain and the connection to frequency domain properties
is not established. We approach the design of spreading sequences based on their
frequency domain characteristics. Based on the frequency domain characteristics of
the spreading sequences with unconstrained amplitudes and phases, we propose a
reduced-rank sequence design algorithm that reduces the computational complexity,
feedback bandwidth and improves the performance of some existing sequence design
algorithms proposed for frequency selective channels.
We propose several different approaches to design the spreading sequences with constrained amplitudes and phases for frequency selective channels. First, we use the
frequency domain characteristics of the unconstrained spreading sequences to find a
set of constrained amplitude sequences for a given set of channels. This is done either
by carefully assigning an already existing set of sequences for a given set of users or by
mapping unconstrained sequences onto a unit circle. Secondly, we use an information
theoretic approach to design the spreading sequences by matching the spectrum of
each userâÂÂs sequence to the water-filling spectrum of the userâÂÂs channel.
Finally, the design of inner shaping codes for single-head and multi-head magnetic
recoding channels is discussed. The shaping sequences are designed considering them
as short spreading codes matched to the recoding channels. The outer channel code
is matched to the inner shaping code using the extrinsic information transfer chart
analysis.
In this dissertation we introduce a new frequency domain approach to design
spreading sequences for frequency selective channels. We also extend this proposed
technique to design inner shaping codes for partial response channels.
|
66 |
Complementary Coded CDMA and Its Applications in V2V CommunicationsTsao, Yao-Lin 10 September 2007 (has links)
First, the introduction of IEEE 802.11p will be made. There are some issues of IEEE 802.11p under vehicular environment And its OFDM system suffers much loss in time-varying fading channel. To mitigate the performance degradation, we combine Columnwise Complementary Codes with IEEE 802.11p to resist the interference caused by high-speed mobile channel. Finally, we will show some simulation results of CCC-OFDM system compared with the original OFDM system working in the IEEE 802.11p environment.
|
67 |
Complementary Coded CDMA and Its Applications in Optical CommunicationsMing, Kuo-yu 10 September 2007 (has links)
none
|
68 |
Angular and Temporal Diversity Combining in CDMA systemsLee, Hung-yang 15 August 2009 (has links)
none
|
69 |
THE CODING-SPREADING TRADEOFF PROBLEM IN FINITE-SIZED SYNCHRONOUS DS-CDMA SYSTEMSTang, Zuqiang January 2005 (has links)
This dissertation provides a comprehensive analysis of the coding-spreading tradeoff problem in finite-sized synchronous DS-CDMA systems. In contrast to the large system which has a large number of users, the finite-sized system refers to a system with a small number of users. Much work has been performed in the past on the analysis of the spectral efficiency of synchronous DS-CDMA systems and the associated coding-spreading tradeoff problem. However, most of the analysis is based on the large-system assumptions. In this dissertation, we focused on finite-sized systems with the help of numerical methods and Monte-Carlo simulations.Binary-input achievable information rates for finite-sized synchronous DS-CDMA systems with different detection/decoding schemes on AWGN channel are numerically calculated for various coding/spreading apportionments. We use these results to determine the existence and value of an optimal code rate for a number of different multiuser receivers, where optimality is in the sense of minimizing the SNR required for reliable multiuser communication. Our results are consistent with the well-known fact that all coding (no spreading) is optimal for the maximum a posteriori receiver.Simulations of the LDPC-coded synchronous DS-CDMA systems with iterative multiuser detection/decoding and MMSE multiuser detection/single-user decoding are also presented to show that the binary-input capacities can be closely approached with practical schemes. The coding-spreading tradeoff is examined using these LDPC code simulation results, where agreement with the information-theoretic results is demonstrated.We extend our work to the DS-CDMA systems on two idealized Rayleigh flat-fading channels: the chip-level flat-fading (CLFF) and the (code) symbol-level flat-fading (SLFF). These models represent ideal fast fading and slow fading channels, respectively. Both information-theoretic results and LDPC code simulation results are presented to show the effects of channel fading on system performance and the coding-spreading tradeoff. It is shown that fast fading can be beneficial to system performance under the condition of perfect channel state information at receiver, but slow fading is very harmful. Slow fading also increases the importance of coding greatly, compared to the AWGN and fast fading.Finally, we present some comparisons with large-system results on AWGN and CLFF channels, which show both consistencies and discrepancies.
|
70 |
Capacity analysis and resource allocation in wireless communication systems /Feiten, Anke. January 2006 (has links)
Zugl.: Aachen, Techn. Hochsch., Diss., 2006.
|
Page generated in 0.0505 seconds