• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 7
  • 3
  • 1
  • Tagged with
  • 27
  • 27
  • 12
  • 11
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Développement et évaluation d'une théorie de milieu effectif combinée à un facteur de structure polydisperse pour la caractérisation ultrasonore de l'agrégation érythrocytaire / Development and validation of an effective medium theory combined to a polydisperse structure factor for modeling the scattering by aggregating red blood cells

Monchy, Romain de 16 December 2016 (has links)
Ce travail de thèse a pour objectif de développer et de valider expérimentalement un modèle de diffusion adapté au sang agrégeant, prenant en compte une forte fraction volumique de globules rouges (hématocrite de 40%) et des structures d’agrégats polydisperses. Un modèle développé récemment pour l’estimation de la microstructure du sang est la théorie de milieu effectif combinée à un modèle de facteur de structure monodisperse. Pour augmenter le domaine de validité de ce modèle en hautes fréquences, nous proposons une théorie de milieu effectif prenant en compte la composante incohérente de la diffusion par des agrégats de globules rouges. A l’aide de simulation numériques tridimensionnelles, nous montrons que la nouvelle modélisation permet de prédire les coefficients de rétrodiffusion de façon satisfaisante pour un produit $kR<2$ ($k$ étant le nombre d’ondes et $R$ le rayon d’un agrégat). Par ailleurs, nous proposons une théorie de milieu effectif combinée à un facteur de structure polydisperse afin d’estimer, à partir de la mesure expérimentale du coefficient de rétrodiffusion, des paramètres de structure des agrégats : le rayon moyen de la distribution de tailles, son étalement, et la compacité des agrégats. Des expériences réalisées sur du sang de porc cisaillé dans un dispositif de Couette couplé à une sonde ultrasonore montrent que le modèle polydisperse permet d’obtenir de meilleures courbes d’ajustement des coefficients de rétrodiffusion en comparaison des modèles monodisperses classiques. Les tailles d’agrégats estimées par ultrasons sont corrélées de façon satisfaisante (r$^2$ $\approx$ 0.92) avec les tailles estimées par ailleurs dans un dispositif optique. / This thesis aims to develop and evaluate a scattering model for aggregating blood, taking into account the high volume fraction of red blood cells in blood (40%) and the polydispersity in terms of aggregate size. The effective medium theory combined with the monodisperse structure factor model was recently developed to estimate blood microstructure. In order to improve the modeling at high frequency range, we proposed an effective medium theory that takes into account the incoherent component of the scattering by aggregates of RBCs. Three dimensional simulations were performed and showed that the consideration of the incoherent component allows to approximate the simulation satisfactorily for a product of the wavenumber times the aggregates radius $kR$ up to 2. Besides, we proposed an effective medium theory combined with a polydisperse structure factor. From the measured BSC, this model allows to estimate three structural parameters: the mean radius of the aggregate size distribution, the width of the distribution, and the compactness of the aggregates. Experiments were performed on pig blood shared in a Couette device coupled with an ultrasonic probe, and showed that the polydisperse modeling provides better fitting to the experimental BSC data, when compared to the classical monodisperse models. Satisfactory correlation is obtained (r$^2$ $\approx$ 0.92) between the aggregate sizes estimated with ultrasound and the aggregate sizes estimated on the same sample in an optical device.
22

Influence de l’agrégation érythrocytaire sur la migration axiale de microparticules simulant des plaquettes sanguines

Guilbert, Cyrille 06 1900 (has links)
Lors du phénomène d’hémostase primaire ou de thrombose vasculaire, les plaquettes sanguines doivent adhérer aux parois afin de remplir leur fonction réparatrice ou pathologique. Pour ce faire, certains facteurs rhéologiques et hémodynamiques tels que l’hématocrite, le taux de cisaillement local et les contraintes de cisaillement pariétal, entrent en jeu afin d’exclure les plaquettes sanguines de l’écoulement principal et de les transporter vers le site endommagé ou enflammé. Cette exclusion pourrait aussi être influencée par l’agrégation de globules rouges qui est un phénomène naturel présent dans tout le système cardiovasculaire selon les conditions d’écoulement. La dérive de ces agrégats de globules rouges vers le centre des vaisseaux provoque la formation de réseaux d’agrégats dont la taille et la complexité varient en fonction de l’hématocrite et des conditions de cisaillement présentes. Il en résulte un écoulement bi-phasique avec un écoulement central composé d’agrégats de globules rouges avoisinés par une région moins dense en particules où l’on peut trouver des globules rouges singuliers, des petits rouleaux de globules rouges et une importante concentration en plaquettes et globules blancs. De ce fait, il est raisonnable de penser que plus la taille des agrégats qui occupent le centre du vaisseau augmente, plus il y aura de plaquettes expulsées vers les parois vasculaires. L'objectif du projet est de quantifier, in vitro, la migration des plaquettes sanguines en fonction du niveau d’agrégation érythrocytaire présent, en faisant varier l’hématocrite, le taux de cisaillement et en promouvant l’agrégation par l’ajout d’agents tels que le dextran à poids moléculaire élevé. Cependant, le comportement non Newtonien du sang dans un écoulement tubulaire peut être vu comme un facteur confondant à cause de son impact sur l’organisation spatiale des agrégats de globules rouges. De ce fait, les études ont été réalisées dans un appareil permettant de moduler, de façon homogène, la taille et la structure de ces agrégats et de quantifier ainsi leur effet sur la migration axiale des plaquettes. Du sang de porc anti coagulé a été ajusté à différents taux d’hématocrite et insérer dans un appareil à écoulement de Couette, à température ambiante. Les plaquettes sanguines, difficilement isolables in vitro sans en activer certains ligands membranaires, ont été remplacées par des fantômes en polystyrène ayant un revêtement de biotine. La quantification de la migration de ces fantômes de plaquettes a été réalisée grâce à l’utilisation de membranes biologiques fixées sur les parois internes de l’entrefer du rhéomètre de Couette. Ces membranes ont un revêtement de streptavidine assurant une très forte affinité d’adhésion avec les microparticules biotynilées. À 40% d’hématocrite, à un cisaillement de 2 s-1, 566 ± 53 microparticules ont été comptées pour un protocole préétabli avec du sang non agrégeant, comparativement à 1077 ± 229 pour du sang normal et 1568 ± 131 pour du sang hyper agrégeant. Les résultats obtenus suggèrent une nette participation de l’agrégation érythrocytaire sur le transport des fantômes de plaquettes puisque l’adhésion de ces derniers à la paroi du rhéomètre de Couette augmente de façon quasi exponentielle selon le niveau d’agrégation présent. / During the primary hemostatis or thrombosis phenomenon, the human blood platelets must adhere to the vascular wall in order for them to perform their repairing or pathological function. To do so, certain rheological and hemodynamic factors such as the hematocrit, local shear rate and the wall shear stress, must come into play to exclude blood platelets from the main blood stream and transport them to the vicinity of the damaged or inflamed site. This exclusion could also be influenced by red blood cell aggregation which is a natural process present throughout the entire cardiovascular system under certain flow conditions. The displacement of these rouleaux of red blood cells towards the centre of the vessel induces the formation of 3D networks of aggregates whose size and complexity vary as a function of the hematocrit and the shearing conditions present. It results in a two phase flow with an inner core composed of red blood cell aggregates surrounded by single red blood cells or small aggregates and large numbers of white blood cells and platelets. It is therefore reasonable to believe that the larger the inner core becomes, the more platelets will be expulsed towards the vascular wall. The objective of the study was to quantify, in vitro, the lateral migration of blood platelets as a function of the level of red blood cell aggregation present, by changing the hematocrit, the shear rate and by promoting red blood cell aggregation with the use of agents such as high molecular weight dextran. However, the non Newtonian behavior of blood in tube flow can be seen as a confounding factor to the understanding of the spatial organization of the red blood cell aggregates. In this study, whole blood was circulated in a simple shear flow apparatus, which allowed to homogeneously modulate the red blood cell aggregate sizes and structure, and quantify their effect on the axial migration of blood platelets. Anticoagulated porcine bloods were adjusted to different hematocrits and inserted into a Couette flow apparatus, at room temperature. Blood platelets, difficult to isolate in vitro without activating in a non reproducible manner specific membrane ligands, were replaced with biotin coated fluorescent polystyrene beads. The quantification of the migration of these platelet ghosts was conducted with the use of biological membranes fixed on the interior walls of the Couette apparatus. These streptavidin coated membranes ensure a strong adhesive affinity with the biotynilated beads. At 40% hematocrit and at a shear of 2 s-1, 566 ± 53 micro particles were counted for non aggregated erythrocytes, 1077 ± 229 for aggregating red blood cells and 1568 ± 131 for hyper aggregating blood. The results obtained suggest a strong participation of the red blood cell aggregation on the transport of platelet ghosts since the number of ghost cells fixed on the wall of the Couette rheometer increases almost exponentially with the level of aggregation present.
23

Paramétrisation de la rétrodiffusion ultrasonore érythrocytaire haute fréquence et pertinence comme facteur de risque de la thrombose veineuse

Yu, Francois T.H. 12 1900 (has links)
L’agrégation érythrocytaire est le principal facteur responsable des propriétés non newtoniennes sanguines pour des conditions d’écoulement à faible cisaillement. Lorsque les globules rouges s’agrègent, ils forment des rouleaux et des structures tridimensionnelles enchevêtrées qui font passer la viscosité sanguine de quelques mPa.s à une centaine de mPa.s. Cette organisation microstructurale érythrocytaire est maintenue par des liens inter-globulaires de faible énergie, lesquels sont brisés par une augmentation du cisaillement. Ces propriétés macroscopiques sont bien connues. Toutefois, les liens étiologiques entre ces propriétés rhéologiques générales et leurs effets pathophysiologiques demeurent difficiles à évaluer in vivo puisque les propriétés sanguines sont dynamiques et fortement tributaires des conditions d’écoulement. Ainsi, à partir de propriétés rhéologiques mesurées in vitro dans des conditions contrôlées, il devient difficile d’extrapoler leurs valeurs dans un environnement physiologique. Or, les thrombophlébites se développent systématiquement en des loci particuliers du système cardiovasculaire. D’autre part, plusieurs études cliniques ont établi que des conditions hémorhéologiques perturbées constituent des facteurs de risque de thrombose veineuse mais leurs contributions étiologiques demeurent hypothétiques ou corrélatives. En conséquence, un outil de caractérisation hémorhéologique applicable in vivo et in situ devrait permettre de mieux cerner et comprendre ces implications. Les ultrasons, qui se propagent dans les tissus biologiques, sont sensibles à l’agrégation érythrocytaire. De nature non invasive, l’imagerie ultrasonore permet de caractériser in vivo et in situ la microstructure sanguine dans des conditions d’écoulements physiologiques. Les signaux ultrasonores rétrodiffusés portent une information sur la microstructure sanguine reflétant directement les perturbations hémorhéologiques locales. Une cartographie in vivo de l’agrégation érythrocytaire, unique aux ultrasons, devrait permettre d’investiguer les implications étiologiques de l’hémorhéologie dans la maladie thrombotique vasculaire. Cette thèse complète une série de travaux effectués au Laboratoire de Biorhéologie et d’Ultrasonographie Médicale (LBUM) du centre de recherche du Centre hospitalier de l’Université de Montréal portant sur la rétrodiffusion ultrasonore érythrocytaire et menant à une application in vivo de la méthode. Elle se situe à la suite de travaux de modélisation qui ont mis en évidence la pertinence d’un modèle particulaire tenant compte de la densité des globules rouges, de la section de rétrodiffusion unitaire d’un globule et du facteur de structure. Ce modèle permet d’établir le lien entre la microstructure sanguine et le spectre fréquentiel du coefficient de rétrodiffusion ultrasonore. Une approximation au second ordre en fréquence du facteur de structure est proposée dans ces travaux pour décrire la microstructure sanguine. Cette approche est tout d’abord présentée et validée dans un champ d’écoulement cisaillé homogène. Une extension de la méthode en 2D permet ensuite la cartographie des propriétés structurelles sanguines en écoulement tubulaire par des images paramétriques qui mettent en évidence le caractère temporel de l’agrégation et la sensibilité ultrasonore à ces phénomènes. Une extrapolation menant à une relation entre la taille des agrégats érythrocytaires et la viscosité sanguine permet l’établissement de cartes de viscosité locales. Enfin, il est démontré, à l’aide d’un modèle animal, qu’une augmentation subite de l’agrégation érythrocytaire provoque la formation d’un thrombus veineux. Le niveau d’agrégation, la présence du thrombus et les variations du débit ont été caractérisés, dans cette étude, par imagerie ultrasonore. Nos résultats suggèrent que des paramètres hémorhéologiques, préférablement mesurés in vivo et in situ, devraient faire partie du profil de risque thrombotique. / The aggregation of erythrocytes is the main determinant of blood non Newtonian behaviour under low shearing flow conditions. When red blood cells (RBCs) aggregate, they form « rouleaux » and complex tridimensional structures that increase blood viscosity from a few mPa.s to a hundred mPa.s. The reversible RBC aggregation phenomenon is attributed to weak adhesive links between erythrocytes that are readily broken by increasing flow shearing. Blood bulk rheological properties have been comprehensively studied. However, the in vivo physiological impacts of abnormal clustering of RBCs are more difficult to assess. Clinical studies have identified altered hemorheology as a risk factor for thrombosis, but a clear etiological relationship between abnormal aggregation and thrombosis has not yet been established, in part because clinical conclusions were derived from correlative findings. It is to note that cardiovascular diseases such as deep venous thrombosis generally occur at specific locations within the vascular bed, suggesting a hemodynamic contribution to the development of this disease. Consequently, it is postulated that in vivo hemorheological characterization may help shed some light on the role of RBC hyper-aggregation on cardiovascular disorders. Ultrasound imaging, a non-invasive method relying on the propagation of mechanical waves within biological tissues, is sensitive to RBC aggregation. Indeed, the study of backscattered waves allows characterizing blood microstructure in vivo and in situ under physiological flow conditions. The work described in this thesis is based on prior simulation studies, performed at the Laboratory of Biorheology and Medical Ultrasonics of the University of Montreal Hospital Research Center, in which the backscattering of ultrasound from aggregating RBCs was modeled by considering a particle scattering strategy. In this approach, each RBC is a weak ultrasound scatterer (Born assumption) and the backscattering coefficient is modeled as the product of the RBC number density, the RBC backscattering cross section and a structure factor. This model relates variations in the backscattering coefficient to the RBC spatial organisation through the structure factor, which is the only parameter that changes during the aggregation process. A second order expansion in frequency of the structure factor was used to describe blood microstructure in terms of a packing factor W and an ensemble averaged aggregate diameter D. The model was first presented and validated by considering a homogenous shear flow condition using three broadband mono-element transducers. It was then extended in 2D to allow computation of parametric images in tube flow. An extrapolation based on the assumption that viscosity is related to the level of aggregation was used to compute local viscosity maps. Finally, a last contribution was the demonstration that a sudden increase in aggregation tendency directly promoted the formation of venous thrombosis in an experimental animal model. In that study, RBC aggregation, thrombus formation and flow variations were monitored longitudinally for two weeks using ultrasound. The results reported in this thesis suggest that rheological parameters on RBC clustering, ideally assessed in vivo and in situ, should be included in thrombosis risk profiling.
24

Influence de l’agrégation érythrocytaire sur la migration axiale de microparticules simulant des plaquettes sanguines

Guilbert, Cyrille 06 1900 (has links)
Lors du phénomène d’hémostase primaire ou de thrombose vasculaire, les plaquettes sanguines doivent adhérer aux parois afin de remplir leur fonction réparatrice ou pathologique. Pour ce faire, certains facteurs rhéologiques et hémodynamiques tels que l’hématocrite, le taux de cisaillement local et les contraintes de cisaillement pariétal, entrent en jeu afin d’exclure les plaquettes sanguines de l’écoulement principal et de les transporter vers le site endommagé ou enflammé. Cette exclusion pourrait aussi être influencée par l’agrégation de globules rouges qui est un phénomène naturel présent dans tout le système cardiovasculaire selon les conditions d’écoulement. La dérive de ces agrégats de globules rouges vers le centre des vaisseaux provoque la formation de réseaux d’agrégats dont la taille et la complexité varient en fonction de l’hématocrite et des conditions de cisaillement présentes. Il en résulte un écoulement bi-phasique avec un écoulement central composé d’agrégats de globules rouges avoisinés par une région moins dense en particules où l’on peut trouver des globules rouges singuliers, des petits rouleaux de globules rouges et une importante concentration en plaquettes et globules blancs. De ce fait, il est raisonnable de penser que plus la taille des agrégats qui occupent le centre du vaisseau augmente, plus il y aura de plaquettes expulsées vers les parois vasculaires. L'objectif du projet est de quantifier, in vitro, la migration des plaquettes sanguines en fonction du niveau d’agrégation érythrocytaire présent, en faisant varier l’hématocrite, le taux de cisaillement et en promouvant l’agrégation par l’ajout d’agents tels que le dextran à poids moléculaire élevé. Cependant, le comportement non Newtonien du sang dans un écoulement tubulaire peut être vu comme un facteur confondant à cause de son impact sur l’organisation spatiale des agrégats de globules rouges. De ce fait, les études ont été réalisées dans un appareil permettant de moduler, de façon homogène, la taille et la structure de ces agrégats et de quantifier ainsi leur effet sur la migration axiale des plaquettes. Du sang de porc anti coagulé a été ajusté à différents taux d’hématocrite et insérer dans un appareil à écoulement de Couette, à température ambiante. Les plaquettes sanguines, difficilement isolables in vitro sans en activer certains ligands membranaires, ont été remplacées par des fantômes en polystyrène ayant un revêtement de biotine. La quantification de la migration de ces fantômes de plaquettes a été réalisée grâce à l’utilisation de membranes biologiques fixées sur les parois internes de l’entrefer du rhéomètre de Couette. Ces membranes ont un revêtement de streptavidine assurant une très forte affinité d’adhésion avec les microparticules biotynilées. À 40% d’hématocrite, à un cisaillement de 2 s-1, 566 ± 53 microparticules ont été comptées pour un protocole préétabli avec du sang non agrégeant, comparativement à 1077 ± 229 pour du sang normal et 1568 ± 131 pour du sang hyper agrégeant. Les résultats obtenus suggèrent une nette participation de l’agrégation érythrocytaire sur le transport des fantômes de plaquettes puisque l’adhésion de ces derniers à la paroi du rhéomètre de Couette augmente de façon quasi exponentielle selon le niveau d’agrégation présent. / During the primary hemostatis or thrombosis phenomenon, the human blood platelets must adhere to the vascular wall in order for them to perform their repairing or pathological function. To do so, certain rheological and hemodynamic factors such as the hematocrit, local shear rate and the wall shear stress, must come into play to exclude blood platelets from the main blood stream and transport them to the vicinity of the damaged or inflamed site. This exclusion could also be influenced by red blood cell aggregation which is a natural process present throughout the entire cardiovascular system under certain flow conditions. The displacement of these rouleaux of red blood cells towards the centre of the vessel induces the formation of 3D networks of aggregates whose size and complexity vary as a function of the hematocrit and the shearing conditions present. It results in a two phase flow with an inner core composed of red blood cell aggregates surrounded by single red blood cells or small aggregates and large numbers of white blood cells and platelets. It is therefore reasonable to believe that the larger the inner core becomes, the more platelets will be expulsed towards the vascular wall. The objective of the study was to quantify, in vitro, the lateral migration of blood platelets as a function of the level of red blood cell aggregation present, by changing the hematocrit, the shear rate and by promoting red blood cell aggregation with the use of agents such as high molecular weight dextran. However, the non Newtonian behavior of blood in tube flow can be seen as a confounding factor to the understanding of the spatial organization of the red blood cell aggregates. In this study, whole blood was circulated in a simple shear flow apparatus, which allowed to homogeneously modulate the red blood cell aggregate sizes and structure, and quantify their effect on the axial migration of blood platelets. Anticoagulated porcine bloods were adjusted to different hematocrits and inserted into a Couette flow apparatus, at room temperature. Blood platelets, difficult to isolate in vitro without activating in a non reproducible manner specific membrane ligands, were replaced with biotin coated fluorescent polystyrene beads. The quantification of the migration of these platelet ghosts was conducted with the use of biological membranes fixed on the interior walls of the Couette apparatus. These streptavidin coated membranes ensure a strong adhesive affinity with the biotynilated beads. At 40% hematocrit and at a shear of 2 s-1, 566 ± 53 micro particles were counted for non aggregated erythrocytes, 1077 ± 229 for aggregating red blood cells and 1568 ± 131 for hyper aggregating blood. The results obtained suggest a strong participation of the red blood cell aggregation on the transport of platelet ghosts since the number of ghost cells fixed on the wall of the Couette rheometer increases almost exponentially with the level of aggregation present.
25

Paramétrisation de la rétrodiffusion ultrasonore érythrocytaire haute fréquence et pertinence comme facteur de risque de la thrombose veineuse

Yu, Francois T.H. 12 1900 (has links)
L’agrégation érythrocytaire est le principal facteur responsable des propriétés non newtoniennes sanguines pour des conditions d’écoulement à faible cisaillement. Lorsque les globules rouges s’agrègent, ils forment des rouleaux et des structures tridimensionnelles enchevêtrées qui font passer la viscosité sanguine de quelques mPa.s à une centaine de mPa.s. Cette organisation microstructurale érythrocytaire est maintenue par des liens inter-globulaires de faible énergie, lesquels sont brisés par une augmentation du cisaillement. Ces propriétés macroscopiques sont bien connues. Toutefois, les liens étiologiques entre ces propriétés rhéologiques générales et leurs effets pathophysiologiques demeurent difficiles à évaluer in vivo puisque les propriétés sanguines sont dynamiques et fortement tributaires des conditions d’écoulement. Ainsi, à partir de propriétés rhéologiques mesurées in vitro dans des conditions contrôlées, il devient difficile d’extrapoler leurs valeurs dans un environnement physiologique. Or, les thrombophlébites se développent systématiquement en des loci particuliers du système cardiovasculaire. D’autre part, plusieurs études cliniques ont établi que des conditions hémorhéologiques perturbées constituent des facteurs de risque de thrombose veineuse mais leurs contributions étiologiques demeurent hypothétiques ou corrélatives. En conséquence, un outil de caractérisation hémorhéologique applicable in vivo et in situ devrait permettre de mieux cerner et comprendre ces implications. Les ultrasons, qui se propagent dans les tissus biologiques, sont sensibles à l’agrégation érythrocytaire. De nature non invasive, l’imagerie ultrasonore permet de caractériser in vivo et in situ la microstructure sanguine dans des conditions d’écoulements physiologiques. Les signaux ultrasonores rétrodiffusés portent une information sur la microstructure sanguine reflétant directement les perturbations hémorhéologiques locales. Une cartographie in vivo de l’agrégation érythrocytaire, unique aux ultrasons, devrait permettre d’investiguer les implications étiologiques de l’hémorhéologie dans la maladie thrombotique vasculaire. Cette thèse complète une série de travaux effectués au Laboratoire de Biorhéologie et d’Ultrasonographie Médicale (LBUM) du centre de recherche du Centre hospitalier de l’Université de Montréal portant sur la rétrodiffusion ultrasonore érythrocytaire et menant à une application in vivo de la méthode. Elle se situe à la suite de travaux de modélisation qui ont mis en évidence la pertinence d’un modèle particulaire tenant compte de la densité des globules rouges, de la section de rétrodiffusion unitaire d’un globule et du facteur de structure. Ce modèle permet d’établir le lien entre la microstructure sanguine et le spectre fréquentiel du coefficient de rétrodiffusion ultrasonore. Une approximation au second ordre en fréquence du facteur de structure est proposée dans ces travaux pour décrire la microstructure sanguine. Cette approche est tout d’abord présentée et validée dans un champ d’écoulement cisaillé homogène. Une extension de la méthode en 2D permet ensuite la cartographie des propriétés structurelles sanguines en écoulement tubulaire par des images paramétriques qui mettent en évidence le caractère temporel de l’agrégation et la sensibilité ultrasonore à ces phénomènes. Une extrapolation menant à une relation entre la taille des agrégats érythrocytaires et la viscosité sanguine permet l’établissement de cartes de viscosité locales. Enfin, il est démontré, à l’aide d’un modèle animal, qu’une augmentation subite de l’agrégation érythrocytaire provoque la formation d’un thrombus veineux. Le niveau d’agrégation, la présence du thrombus et les variations du débit ont été caractérisés, dans cette étude, par imagerie ultrasonore. Nos résultats suggèrent que des paramètres hémorhéologiques, préférablement mesurés in vivo et in situ, devraient faire partie du profil de risque thrombotique. / The aggregation of erythrocytes is the main determinant of blood non Newtonian behaviour under low shearing flow conditions. When red blood cells (RBCs) aggregate, they form « rouleaux » and complex tridimensional structures that increase blood viscosity from a few mPa.s to a hundred mPa.s. The reversible RBC aggregation phenomenon is attributed to weak adhesive links between erythrocytes that are readily broken by increasing flow shearing. Blood bulk rheological properties have been comprehensively studied. However, the in vivo physiological impacts of abnormal clustering of RBCs are more difficult to assess. Clinical studies have identified altered hemorheology as a risk factor for thrombosis, but a clear etiological relationship between abnormal aggregation and thrombosis has not yet been established, in part because clinical conclusions were derived from correlative findings. It is to note that cardiovascular diseases such as deep venous thrombosis generally occur at specific locations within the vascular bed, suggesting a hemodynamic contribution to the development of this disease. Consequently, it is postulated that in vivo hemorheological characterization may help shed some light on the role of RBC hyper-aggregation on cardiovascular disorders. Ultrasound imaging, a non-invasive method relying on the propagation of mechanical waves within biological tissues, is sensitive to RBC aggregation. Indeed, the study of backscattered waves allows characterizing blood microstructure in vivo and in situ under physiological flow conditions. The work described in this thesis is based on prior simulation studies, performed at the Laboratory of Biorheology and Medical Ultrasonics of the University of Montreal Hospital Research Center, in which the backscattering of ultrasound from aggregating RBCs was modeled by considering a particle scattering strategy. In this approach, each RBC is a weak ultrasound scatterer (Born assumption) and the backscattering coefficient is modeled as the product of the RBC number density, the RBC backscattering cross section and a structure factor. This model relates variations in the backscattering coefficient to the RBC spatial organisation through the structure factor, which is the only parameter that changes during the aggregation process. A second order expansion in frequency of the structure factor was used to describe blood microstructure in terms of a packing factor W and an ensemble averaged aggregate diameter D. The model was first presented and validated by considering a homogenous shear flow condition using three broadband mono-element transducers. It was then extended in 2D to allow computation of parametric images in tube flow. An extrapolation based on the assumption that viscosity is related to the level of aggregation was used to compute local viscosity maps. Finally, a last contribution was the demonstration that a sudden increase in aggregation tendency directly promoted the formation of venous thrombosis in an experimental animal model. In that study, RBC aggregation, thrombus formation and flow variations were monitored longitudinally for two weeks using ultrasound. The results reported in this thesis suggest that rheological parameters on RBC clustering, ideally assessed in vivo and in situ, should be included in thrombosis risk profiling.
26

Development of a Substrate with Photo-Modulatable Rigidity for Probing Spatial and Temporal Responses of Cells to Mechanical Signals: A Dissertation

Frey, Margo Tilley 01 July 2008 (has links)
Topographical and mechanical properties of adhesive substrates provide important biological cues that affect cell spreading, migration, growth, and differentiation. The phenomenon has led to the increased use of topographically patterned and flexible substrates in studying cultured cells. However, these studies may be complicated by various limitations. For example, the effects of ligand distribution and porosity are affected by topographical features of 3D biological constructs. Similarly, many studies of mechanical cues are compounded with cellular deformation from external forces, or limited by comparative studies of separate cells on different substrates. Furthermore, understanding cell responses to mechanical input is dependent upon reliable measurements of mechanical properties. This work addresses each of these issues. To determine how substrate topography and focal adhesion kinase (FAK) affect cell shape and movement, I studied FAK-null (FAK -/-) and wild type mouse 3T3 fibroblasts on chemically identical polystyrene substrates with either flat surfaces or micron-sized pillars, I found that, compared to cells on flat surfaces, those on pillar substrates showed a more branched shape, an increased linear speed, and a decreased directional stability, which were dependent on both myosin-II and FAK. To study the dynamic responses to changes in substrate stiffness without other confounding effects, I developed a UV-modulatable substrate that softens upon UV irradiation. As atomic force microscopy (AFM) proved inadequate to detect microscale changes in stiffness, I first developed and validated a microsphere indentation method that is compatible with fluorescence microscopy. The results obtained with this method were comparable to those obtained with AFM. The UV-modulatable substrates softened by ~20-30% with an intensity of irradiation that has no detectable effect on 3T3 cells on control surfaces. Cells responded to global softening of the substrate with an initial retraction followed by a gradual reduction in spread area. Precise spatial control of softening is also possible - while there was little response to posterior softening, anterior softening elicited a pronounced retraction and either a reversal of cell polarity or a significant decrease in spread area if the cells move into the softened region. In conclusion, these techniques provide advances in gaining mechanistic insight into cellular responses to topographical and mechanical cues. Additionally, there are various other potential applications of the novel UV-softening substrate, particularly in regenerative medicine and tissue engineering.
27

Inhibiting protein clearance to induce cell death in tuberous sclerosis and pancreatic cancer

Hendricks, Jeremiah William January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Sequestration at the aggresome and degradation through autophagy are two approaches by which a cell can counteract the toxic effect of misfolded proteins. Tuberous sclerosis (TS) and cancer cells can become dependent on autophagy for survival due to the high demand for protein synthesis, thus making protein clearance a potential therapeutic target. Because of its histone deacetylase (HDAC) inhibitory activity, we hypothesized that 4-phenylbutyrate (4-PBA) inhibits HDAC6 and aggresome formation to induce TS cell death. We found that 4-PBA treatment increases cell death and reduces bortezomib-induced aggresome formation. To link these results with HDAC inhibition we used two other HDAC inhibitors, trichostatin A (TSA) and tubastatin, and found that they also reduce bortezomib-induced protein aggregation. Because tubulin is a target of HDAC6, we next measured the effect of the HDAC inhibitors and 4-PBA treatment on tubulin acetylation. As expected, tubastatin increased tubulin acetylation but surprisingly TSA and 4-PBA did not. Because 4-PBA did not significantly inhibit HDAC6, we next hypothesized that 4-PBA was alternatively inducing autophagy and increasing aggresome clearance. Surprisingly, autophagy inhibition did not prevent the 4-PBA-induced reduction in protein aggregation. In conclusion, we found 4-PBA to induce cell death and reduce aggresome levels in TS cells, but we found no link between these phenomena. We next hypothesized that loss of the Ral guanine nucleotide exchange factor Rgl2 induces cell death via autophagy inhibition in pancreatic adenocarcinoma (PDAC) cells. KRas is mutationally activated in over 90% of PDACs and directly activates Rgl2. Rgl2 activates RalB, a known regulator of autophagy, and Rgl2 has been shown to promote PDAC cell survival. We first confirmed that loss of Rgl2 does increase cell death in PDAC cells. Initial experiments using doubly tagged fluorescent p62 and LC3 (autophagy markers) suggested that loss of Rgl2 inhibited autophagosome accumulation, but after developing a more sophisticated quantitation method we found loss of Rgl2 to have no effect. We also measured endogenous LC3 levels, and these experiments confirmed loss of Rgl2 to have no effect on autophagy levels. Therefore, loss of Rgl2 increases cell death in PDAC cells, but does not have a significant effect on autophagy.

Page generated in 0.1024 seconds