• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hierarchical Assembly of Polymeric Nanofibers for Advanced Material Applications

Wang, Ji 27 March 2015 (has links)
Polymer nanofibers are gaining importance due to their wide applicability in diverse fields, such as tissue engineering, fuel cells, photonics and sensors. For these applications, manufacturing aligned polymer nanofibers with precisely controlled morphology and well characterized mechanical properties in a bottom up configuration is essential. In this work, we developed an isodiametric design space for fabrication of aligned polystyrene nanofibers (diameter 60-800nm) using non-electrospinning Spinneret based Tunable Engineered Parameter (STEP) technique. By adjusting the processing parameters such as relative humidity, solvent volatility and polarity, porous polymer tubes are demonstrated having large specific surface areas. Combining STEP with sol-gel process, aligned inorganic nanofibers, such as Titanium Oxide (TiO2) with varied morphologies can be conveniently obtained. Mechanical properties of aligned polymer nanofibers (diameter from 50nm to several hundred nanometers) with fixed-fixed boundary conditions were estimated using a lateral force microscope (LFM). We find that the tension in the fiber caused during fabrication process scales with fiber diameter and it dominates fiber stiffness. Our studies demonstrate isotropic arrangement of polymer chains in the fibers and anisotropic arrangement in the necking region for fibers undergone deformation. Finally, this study demonstrates development of force sensors capable of measuring single cell forces, which scale with the fiber structural stiffness. The ability to measure cell forces during cell division, migration and apoptosis provides new insights in cell mechanobiology. / Ph. D.

Page generated in 0.089 seconds