1 |
The roles of Shroom family proteins during Xenopus developmentLee, Chan-jae 16 October 2009 (has links)
The Shroom family of proteins is currently comprised of four members, Shroom1,
2, 3 and 4. Since Shroom3 was shown to be a critical protein for neural tube closure, the
other three proteins are also expected to play an important role for proper development.
However, their functions during development were not clear. To address this, my study
started with Shroom3 function in the neural plate. Shroom3 had been previously known
to induce apical constriction by controlling actin filaments in neuroepithelial cells. My
studies show that Shroom3 induces apico-basal cell heightening by controlling parallel
microtubule assembly. Shroom3 is able to change the distribution of γ-tubulin,
suggesting that Shroom3 controls apical constriction and apico-basal cell elongation via
both actin filaments and microtubules. The ability to control γ-tubulin distribution is
possessed not only by Shroom3, but also by all other Shroom proteins, although they can
not induce apical constriction. In addition, they are expressed in tissues which contain
apico-basally elongated cells. Data from functional assays with Shroom2 show that it
induces cell elongation and is required for proper cell shape in deep layer neuroepithelial cells in Xenopus. These data suggest that Shroom family proteins control cell architecture
during morphogenetic development. I have discovered another role for Shroom2. By
comparative analysis with Xenopus and Physalaemus, which have different pigment
patterns in eggs, I show that a high level of maternal Shroom2 mRNA is important for
pigment polarity in Xenopus. Furthermore, Shroom2 controls the distribution of spectrin
which plays a role in pigment granule movement. Thus, Shroom2 is suggested to be a
key molecule to control the pigment polarity in amphibian eggs. Together all these data
suggest that Shroom family proteins play a role in cell morphogenesis and polarization
via controlling the cytoskeleton during Xenopus development. / text
|
2 |
Úloha vybraných podjednotek komplexu exocyst ve vývoji epidermis Arabidopsis. / Subunits of exocyst complex in the development of Arabidopsis epidermisVojtíková, Zdeňka January 2013 (has links)
Exocyst is protein complex evolutionary conserved in yeasts, animals and plants, which plays a role in control of cell morphogenesis and polarity. It is a tethering complex whose function is to attach secretory vesicles to specifi c foci on plasma membrane. Complex exocyst is formed by eight subunits. Subunit EXO70 is encoded by 23 paralogue genes in genome of Arabidopsis thaliana. Mutation in paralogue subunit EX070H4 causes defect in trichome maturation. Mutant trichomes have thin, not reinforced cell wall, making them soft and elastic. Transcription of EXO70H4 gene is induced by UV radiation, therefore observations of plants cultivated on UV-B radiation were done. Analysis of mutants cultivated on UV-B radiation revealed hyperaccumulation of vesicules in cytoplasm, which were visible by light microscope. Hyperaccumulation was not observed in control plants cultivated on UV-B radiation, but thickening of cell wall was induced. Th is reaction to UV in trichomes hasn't been described yet. Analysis of cellular localization made with YFP tagged constructs revealed that EXO70H4 localizes into mobile corpuscules associating with Golgi apparatus. It was found with yeast two hybrid system that EXO70H4 interacts with TRS120, subunit of tethering complex TRAPPII which is active in Golgi apparatus....
|
3 |
Rôles et régulation du PI(4,5)P2 dans le remodelage cortical et la morphogénèse cellulaire en mitoseRoubinet, Chantal 09 1900 (has links)
La division cellulaire est un événement fondamental, indispensable au développement
embryonnaire animal et à l’homéostasie des organismes adultes. Il s’agit d’un processus complexe qui doit être précisément contrôlé dans le temps et l’espace pour permettre la formation de deux cellules filles, au contenu génétique identique à celui de la cellule mère. Ceci requiert une coordination entre la ségrégation des chromosomes, opérée par les microtubules, et le clivage de la
cellule, engageant une réorganisation dynamique du cytosquelette d’Actine. La modification de la forme des cellules en cours de division est en effet due au remodelage du cortex cellulaire, incluant la
membrane plasmique et le réseau de filaments d’Actine sous-jacent. Bien que cette série de
modifications du cortex soit indispensable au déroulement correct de la division cellulaire, les mécanismes moléculaires du contrôle l’organisation corticale en mitose restent mal caractérisés. Le PI(4,5)P2 est un phosphoinositide constituant de la membrane plasmique, notamment nécessaire à la division cellulaire. Nos travaux chez la drosophile mettent en évidence que ce phospholipide présente une distribution dynamique, homogène sur l’ensemble du cortex à l’entrée en mitose, puis se concentrant à l’équateur des cellules après la séparation des deux lots de chromosomes. Nous montrons que le PI(4,5)P2 est nécessaire au contrôle de la stabilité corticale et du fuseau mitotique, au moins en partie par son rôle favorisant l’activation de la dMoésine. La dMoésine régule l’interaction entre les filaments d’Actine et la membrane plasmique, jouant un rôle clé dans l’organisation locale du cortex des cellules en mitose et ses propriétés mécaniques. Nous montrons que l’interaction PI(4,5)P2/dMoésine participe à la contraction cellulaire à l’entrée en mitose, puis à l’élongation cellulaire caractéristique des étapes plus tardives de la division. A la fin de la mitose, nous montrons que la phosphatase pP1-87B inhibe l’activation de la dMoésine, indispensable
à la relaxation du cortex des cellules en interphase. Par un crible fonctionnel systématique, nous avons recherché l’ensemble des facteurs indispensables à la production et à l’enrichissement localisé du PI(4,5)P2 au cortex mitotique. Nous montrons le rôle majeur de deux voies de biosynthèse, qui collaborent pour produire localement le
PI(4,5)P2 à la membrane plasmique au cours de la mitose. Leur absence prévient l’activation et le recrutement membranaire de la dMoésine, et conduit à une instabilité corticale associée à des défauts du fuseau mitotique. Une troisième voie, nécessitant l’activité de la protéine dOcrl, contribue à
l’homéostasie de ce phosphoinositide, en dégradant le PI(4,5)P2 présent sur les membranes internes de la cellule. L’inactivation de dOcrl empêche la formation normale et l’ingression du sillon de clivage. Ensemble, ces résultats identifient donc des régulateurs importants de la membrane plasmique et de son interaction avec le cytosquelette, permettant de mieux comprendre les mécanismes de la réorganisation de la forme cellulaire au cours de la mitose. / Cell division must be accurately controlled in time and space to permit the formation of two daughter cells whose genetic content is identical to that of the mother cell. This process requires successive modifications of cell shape, induced by cortical remodelling. Molecular mechanisms controlling cortical reorganization during mitosis remain partially uncharacterized. Our work in Drosophila cells demonstrates that PI(4,5)P2, a phosophoinositide of the plasma membrane, is enriched at the equatorial region at the onset of anaphase. This PI(4,5)P2 is necessary for the cortical stability of mitotic cells, and requires dMoesin activation. The dMoesin, linking actin to the plasma membrane, plays a critical role in the cortical organization of mitotic cells and in the regulation of its mechanical properties. We show that the interaction PI(4,5)P2/dMoesin participates in cellular contraction at the beginning of mitosis, then in cell elongation characteristic of subsequent steps. At the end of mitosis, the Pp1-87B phosphatase inactivates the dMoesin. By a systematic functional screen, we characterize the key role of two pathways acting in synergy to locally produce PI(4,5)P2, Skittles- and Pten-dependent, and the role of a third pathway requiring dOcrl activity to control PI(4,5)P2 homeostasis. Altogether, these results allow us to better understand the mechanisms controlling cortical remodelling and modifications of cell shape that occur during mitosis. / Doctorat réalisé en cotutelle avec le laboratoire de François Payre au Centre de Biologie du Développement à Toulouse, France (Université de Toulouse III - Paul Sabatier)
|
4 |
Rôles et régulation du PI(4,5)P2 dans le remodelage cortical et la morphogénèse cellulaire en mitoseRoubinet, Chantal 09 1900 (has links)
No description available.
|
5 |
Úloha fosfolipáz D a lipid fosfát fosfatáz v regulaci buněčné morfogeneze rostlin / Function of phospholipases D and lipid phosphate phosphatases in the regulation of plant cell morphogenesisBezvoda, Radek January 2014 (has links)
of the thesis The presented work explores the function and regulation of intracellular signaling that utilizes phospholipase D (PLD) and phosphatidic acid (PA), especially in the context of cellular morphogenesis of plants. PLDs cleave membrane phospholipids to phosphatidic acid, which has important biophysical and signaling role in many contexts, such as stress response, regulation of cytoskeletal dynamics and vesicular transport. Vesicular transport is essential in focused tip growth of plant pollen tubes and root hairs. Part of the work deals with NADPH oxidases, that are an emerging counterpart of PLD/PA signaling. Tobacco pollen tubes served as the main experimental model, as it enables assessing of changes in secretory pathway after pharmacological or genetic treatments. A technique utilizing antisense oligonucleotides was used for selective knock-down of PLD isoforms, NADPH oxidase and newly studied family of lipid phosphate phosphatases (LPPs) in pollen tubes. This enabled to assess functions of individual isoforms. For studying of selected gene families, various bioinformatic tool were utilized, such as dendrogram construction, analysis of available expression data and creating of virtual proteome. These tools together enabled to select potentially important genes for further experimental...
|
6 |
Rôle des protéines ERM au cours de la morphogenèse cellulaireLeguay, Kévin 06 1900 (has links)
La morphogenèse cellulaire représente l’ensemble des évènements qui dictent la forme et la structure d’une cellule. Ces changements morphologiques sont importants pour de nombreux mécanismes vitaux, comme le développement embryonnaire, la réaction inflammatoire ou encore la cicatrisation. Pour cela, la morphogénèse cellulaire dépend principalement du remodelage du cytosquelette cellulaire qui, une fois associé à la membrane plasmique, forme l’armature de la cellule. L’ezrine, la radixine et la moésine appartiennent à la famille de protéines ERM et lient la membrane plasmique au cytosquelette d’actine et aux microtubules. De ce fait, les protéines ERM sont impliquées dans différents processus fondamentaux nécessitant un remodelage du cortex cellulaire tels que la mitose et la migration. Dans un contexte pathologique, la surexpression et/ou la sur-activation des protéines ERM corrèlent avec un haut potentiel métastatique et un pauvre pronostic chez les patients. Une meilleure compréhension de la régulation de ces trois protéines pourrait ainsi aider au développement de nouvelles solutions thérapeutiques. L’objectif de mon doctorat portait sur l’identification et la caractérisation de nouvelles voies de signalisation régulant les protéines ERM. Dans un premier temps (i), j’ai participé au développement et la caractérisation de sondes BRET2 permettant de suivre l’activité de chaque protéine ERM en temps réel. Ces sondes BRET2 sont d’ailleurs compatibles avec des études à grande échelle ce qui nous permettra de réaliser des cribles génomiques et chimiques dans le but d’identifier, respectivement, de nouveaux régulateurs et inhibiteurs pharmacologiques des protéines ERM. Ensuite (ii), grâce aux sondes BRET2, nous avons identifié les microtubules en tant que nouveaux régulateurs négatifs des protéines ERM. Nous avons alors montré que la dépolymérisation des microtubules d’interphase à l’entrée en mitose participe à l’activation des protéines ERM et à l’arrondissement cellulaire. Enfin (iii), nous avons montré que le récepteur couplé aux protéines G TPα régule l’activité des protéines ERM dans des cellules de cancer du sein triple négatif. Cette régulation est d’ailleurs importante pour la motilité de ces cellules. Pour conclure, en plus d’avoir développé de nouveaux outils utiles pour des études à grande échelle, mon travail de doctorat a permis de mettre en lumière deux nouvelles voies de signalisation régulant les protéines ERM au cours de la mitose et la migration cellulaire. Sans compter l’apport de nouvelles informations sur un aspect fondamental, mon travail a apporté de nouvelles pistes de réflexion quant aux rôles des protéines ERM dans le développement des métastases. / Cell morphogenesis represents the set of events that dictate the shape and structure of a cell. These morphological changes are important for many vital mechanisms such as embryonic development, inflammatory response, or wound healing. Cell morphogenesis depends mainly on the remodeling of the cell cytoskeleton which forms the framework of the cell when associated with the plasma membrane. Ezrin, radixin and moesin belong to the ERM family and crosslink the plasma membrane to the actin cytoskeleton and microtubules. Therefore, ERMs are involved in various fundamental processes requiring remodeling of the cell cortex such as mitosis and migration. In a pathological context, overexpression and/or overactivation of ERMs correlate with high metastatic potential and poor prognosis in patients. Thus, a better understanding of the regulation of these three proteins could help in the development of new therapeutic solutions. The aim of my PhD work was to identify and characterize novel signaling pathways regulating ERMs. In a first step (i), I participated in the development and characterization of BRET2 biosensors allowing to follow the activity of each ERM protein in real time. These BRET2 biosensors are compatible with large-scale studies which will allow us to perform genomic and chemical screens to identify, respectively, new upstream regulators and pharmacological inhibitors of ERMs. Secondly (ii), based on BRET2-chemical screen, we identified microtubules as new negative regulators of ERMs. We then showed that depolymerization of interphase microtubules at mitosis entry triggers ERM activation and cell rounding. Finally (iii), we showed that the G protein-coupled receptor TPα regulates the activity of ERMs in triple negative breast cancer cells. This regulation is important for the motility of these cells. To conclude, in addition to having developed new tools useful for large-scale studies, my PhD work has uncovered two new signaling pathways regulating ERMs during mitosis and cell motility. In addition to providing new information on a fundamental aspect, my work has provided new insights into the roles of ERMs in the development of metastasis.
|
Page generated in 0.0599 seconds