• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Utilizing unlabeled data in cell type identification : A semi-supervised learning approach to classification

Quast, Thijs January 2020 (has links)
Recent research in bioinformatics has presented multiple cell type identification meth- dologies using single cell RNA sequence data (scRNA-seq). However, a consensus on which cell typing methodology consistently demonstrates superior performance remains absent. Additionally, very few studies approach cell type identification through a semi- supervised learning study, whereby the information in unlabeled data is leveraged to train an enhanced classifier. This paper presents cell annotation methodologies through self- learning and graph-based semi-supervised learning, in both raw count scRNA-seq data as well as in a latent embedding. I find that a self-learning framework enhances perfor- mance compared to a solely supervised learning classifier. Additionally, modelling on the latent data representations consistently outperforms modelling on the original data. The results show an overall accuracy of 96.12%, whereas additional models achieve an average precision rate of 95.12% and an average recall rate of 94.40%. The semi-supervised learn- ing approaches in this thesis compare favourable to scANVI in terms of accuracy, average precision rate, average recall rate and average f1-score. Moreover, results for alternative scenarios, in which cell types among training and test data do not perfectly overlap, are reported in this thesis.

Page generated in 0.202 seconds