Spelling suggestions: "subject:"felisolering"" "subject:"tjälisolering""
1 |
Cellulose nanofibril-based Layer-by-Layer system for immuno-capture of circulating tumor cells in microfluidic devicesLahchaichi, Ekeram January 2021 (has links)
År 2020 listade Världshälsoorganisationen (WHO) cancer som den globalt ledande dödsorsaken med över 10 miljoner dödsfall årligen. Av dessa 10 miljoner fall förekommer nästan 70% i låg- till medelinkomstländer - en siffra som på grund av den låga prioriteringen av cancerbehandling- och diagnostik förväntas öka till 85% redan år 2030. Att utveckla enkla, specifika och prisvärda verktyg för diagnostik kommer därför att bli avgörande för förebyggandet av cancer på en global nivå. För att komma ett steg närmare denna utveckling optimerades och testades i denna studie ett mikrofluidiskt system, utvecklat genom layer-bylayer- metoden, baserat på cellulosa nanofibriller med förmågan att isolera och fånga cirkulerande tumörceller. För att uppnå en termodynamisk jämvikt optimerades systemets hydrodynamiska parametrar optimerades för att uppnå en homogen fördelning med hög densitet av det cellulosa-baserade systemet i det mikrofluidiska chippet. Då jämvikt är grundläggande för att maximera det efterföljande beläggningen av antikroppar, och därmed hur effektivt celler isoleras, modifierades parametrar såsom koncentration, flödeshastighet, inkubationstid med fler tills att önskad effekt uppnåtts. Således koncepttestades systemet genom att fånga celler spetsade i blod och därmed demonstrera att systemet kan användas i syfte att isolera cancerceller från blodprov. Detta öppnar upp för utveckling av liknande diagnostiska verktyg som kan användas för att isolera lågfrekventa celler direkt från blod. / In 2020, the World Health Organization (WHO) listed cancer as the leading cause of death worldwide, reaching a staggering number of 10 million cancer-related deaths annually. Of these 10 million deaths, nearly 70% occurred in low- and middle-income countries; a number that is expected to increase to 85% by 2030 due to the lack of resources as well as low priority of the development of cancer treatment and diagnosis. Hence, the development of a sophisticated, specific and affordable diagnostic tool will be crucial for global cancer prevention and control. In this study, a cellulose nanofibril-based Layer-by-Layer system for immuno-capture of tumour cells in a microfluidic device was optimized and tested for the development of a simple and cost-effective diagnostic tool for use in resource-limited areas. In the pursuit of a thermodynamic equilibrium, the hydrodynamic parameters of the system were optimized to achieve a homogeneous distribution with a high surface density of the cellulose-based system across the microfluidic channels. Since an equilibrated system is essential to maximize the antibody coating, and thereby cell capture efficiency, parameters including but not limited to concentration, flow rate and incubation time were altered until a desired effect had been achieved. Thus, as proof-of-concept, the system was tested by capturing cancer cells spiked into whole blood, thereby demonstrating that the system can be utilized for the purpose of isolating cancer cells from blood samples. This paves the way for the development of similar clinical diagnostic tools for the isolation of rare cells directly from whole blood.
|
Page generated in 0.083 seconds