• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phosphomolybdic Acid Catalysis of Cellulose Hydrolysis

Dolmetsch, Troy R 01 May 2017 (has links)
Renewable sources such as cellulose derived biofuels are sought after in order to replace fossil fuel sources that are currently used to meet energy demands. Cellulose is a biological polymer composed of a chain of glucose molecules. Hydrolysis of cellulosic materials then has potential to serve as a source of renewable energy in the form of biofuels. The crystalline structure of cellulose is very stable, and current methods of catalyzed hydrolysis are inefficient for industrial application. This project explores the use of phosphomolybdic acid (PMA) in water to catalyze hydrolysis of microcrystalline cellulose. Temperature of hydrolysis was varied from 40 °C – 100 °C. The amount of soluble hydrolysis product was determined through wet oxidative total organic carbon analysis using a Hach method kit. Total organic carbon content is compared between equimolar amounts of PMA and sulfuric acid, the current industry preference. The yield of total organic carbon in parts per thousand (ppt) is directly correlated to increasing temperatures. Across these temperatures, PMA is more efficient than sulfuric acid in hydrolysis of cellulosic materials. Work is ongoing for glucose-specific product detection as well as evaluating the recyclability of the catalyst.

Page generated in 0.0792 seconds