Spelling suggestions: "subject:"centrosome"" "subject:"centrosomes""
1 |
Multiple tasks of Glycogen synthase kinase-3beta (GSK-3£] ) and its partnersLin, Ching-chih 10 September 2007 (has links)
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine protein kinase which plays a key role in several signaling pathways and its homologues have been identified in most eukaryotes. Since GSK3£]is an essential protein kinase that regulates numerous functions within the cell, an effort to survey possible GSK3£]- interacting proteins from a human testis cDNA library using the yeast two-hybrid system is made. Two interesting candidates are chosen to characterize their functions in this study. One is a centrosomal protein, hNinein, and the other is a novel inhibitor of GSK3£], designated as GSKIP (GSK3£] interaction protein).
In the first part of the present thesis we describe the identification of four diverse CCII-termini of human hNinein isoforms, including a novel isoform 6, by differential expression in a tissue-specific manner. In a kinase assay, the CCII region of hNinein isoforms provides a differential phosphorylation site by GSK3£]. In addition, either N-terminal or CCIIZ domain disruption may cause hNinein conformational change which recruits £^-tubulin to centrosomal or non-centrosomal hNinein-containing sites. Further, depletion of all hNinein isoforms caused a significant decrease in the £^-tubulin signal in the centrosome. In domain swapping, it clearly shows that the CCIIX-CCIIY region provides docking sites for £^-tubulin. Moreover, nucleation of microtubules from the centrosome is significantly affected by the overexpression of either the full-length hNinein or CCIIX-CCIIY region. Taken together, these results show that the centrosomal targeting signals of hNinein have a role not only in regulating hNinein conformation, resulting in localization change, but also provide docking sites to recruit £^-tubulin at centrosomal and non-centrosomal sites.
In the second part of the thesis we describe another candidate, GSK3£]interaction protein (GSKIP), to characterize its functions in neuron differentiation. We use human neuroblastoma SH-SY5Y cells as a model of neuronal cell differentiation. When overexpression of GSKIP prevents neurite outgrowth from RA-mediated differentiation, this result is similar to the presence of LiCl or SB415286, an inhibitor of GSK3£]. Further, GSKIP regulates the activity of GSK3£] through protein-protein interactions rather than post-modulation and GSKIP may affect GSK3£] on neurite outgrowth via inhibiting the specific phosphorylation site of tau. In addition to inhibition of neurite outgrowth, GSKIP overexpressed in SH-SY5Y cells also promotes cell cycle progression by analyzing cell proliferation with cell growth and MTT assay. Furthermore, GSKIP raises the level of £]-catenin and cyclin D1 through inhibition of GSK3£] activity in RA-mediated differentiation SH-SY5Y cells. Taken together, the data suggest that GSKIP, a dual functional molecule, is able to inhibit neurite outgrowth and promote cell proliferation via negative regulation of GSK3£] activity in RA-mediated differentiation of SH-SY5Y cells.
|
2 |
Building a Bigger Brain: Centriole Control of Cerebral Cortical DevelopmentHu, Wen Fan January 2014 (has links)
Human genetics has identified essential roles for many centriole- and cilia-related proteins during human development. Mutations in centrosome-associated genes commonly cause microcephaly, or "small brain," and mutations in cilia-associated genes cause a diverse spectrum of diseases termed "ciliopathies." However, the functional relationships between these two crucial organelles are less well studied.
The activities of centrosome-related proteins during mitosis and cytoskeletal remodeling are well-characterized, but their in vivo functions are incompletely understood. Here, we identify novel human mutations in a centrosomal gene which encodes a regulatory subunit of a microtubule interacting protein, and uncover unexpected pathways during vertebrate development. Human mutations cause severe microlissencephaly, reflecting defects in cerebral cortical neurogenesis, and loss of function in mice and zebrafish confirm essential roles in embryonic development, neurogenesis, and cell survival. Surprisingly, null mutant embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. Deficient induced pluripotent stem cells and lymphoblasts show defective proliferation and spindle structure, while deficient fibroblasts also demonstrate a remarkable excess of centrioles, including excessive maternal centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal novel roles for this protein in regulating overall centriole number, mother centriole and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.
|
3 |
Identification de protéines impliquées dans la localisation des ARNm au niveau de l'appareil mitotiqueOré Rodriguez, Sulin 04 1900 (has links)
La localisation des ARNm au niveau des microtubules et des centrosomes laisse voir le centrosome et le fuseau mitotique comme des complexes ribonucléoprotéiques. Cependant, le mécanisme de localisation des ARNm à ces différentes structures ainsi que leurs fonctions dans la régulation de la mitose restent encore incompris. L’objectif était ici de caractériser des protéines de liaison à l’ARN (RNA Binding Proteins, RBPs) fonctionnellement impliquées dans la localisation des ARNm mitotiques chez la Drosophile et d’évaluer la conservation de la fonction de ces RBPs dans les cellules humaines. La déplétion de RBPs par RNAi générée dans des Drosophiles mutantes résulte en des phénotypes distincts de localisation anormale de l’ARNm centrosomique cen et en des défauts mitotiques différents selon le RBP ciblé, suggérant des fonctions différentes de ces RBPs. De plus, dans les jeunes embryons, les RBPs Bru-2 et Mask semblent être fonctionnellement importants pour la mitose via la régulation de l’ARNm cen, donnant un aperçu de la possible fonction mitotique de RBPs dans la régulation d’un ARN centrosomique. De plus, il a été observé dans un criblage d’immunofluorescence dans des cellules HeLa en métaphase que HNRNPUL1 colocalise au fuseau et aux centrosomes. HNRNPUL1 pourrait être impliqué dans la régulation de l’ARNm CDR2 (orthologue de cen) puisque la déplétion de l’orthologue de HNRNPUL1 dans la Drosophile, CG30122, résulte en une localisation anormale de l’ARNm centrosomique cen. / The localization of mRNA to microtubules and centrosomes has led to the suggestion that the centrosome and mitotic spindle are in fact ribonucleoprotein complexes. However, the mechanism of mRNA localization to those structures and its functional contribution in mitosis regulation remain poorly characterized. The objectives here were to identify RNA Binding Proteins (RBPs) involved in mitotic mRNA localization in Drosophila and to assess the conservation of the function of these RBPs in human cells. RNAi-mediated RBP depletion in Drosophila mutants leads to distinct phenotypes of abnormal localization of the centrosomal cen mRNA, and to different mitotic defects depending on the targeted RBP, suggesting different functions for these RBPs. Moreover, in young embryos, Bru-2 and Mask RBPs seem to be functionally important for mitosis through cen mRNA regulation, giving insight into a possible RBP mitotic function in regulating a centrosomal mRNA. In addition, data from an immunofluorescence screen on HeLa cells at metaphase suggests that HNRNPUL1 colocalizes to the spindle and centrosomes. HNRNPUL1 may be involved in the regulation of CDR2 mRNA (cen ortholog) because depletion of the HNRNPUL1 ortholog in flies, CG30122, disrupted cen mRNA localization.
|
4 |
Mechanisms of non-centrosomal MTOC formation at the nucleus in muscle cells / Mécanismes non-centrosomaux impliqués dans la formation du centre organisateur des microtubules au noyaux des cellules musculairesGimpel, Petra 04 September 2017 (has links)
Le juste positionnement du noyau durant la formation musculaire semble important pour la fonction musculaire et des défauts ont été associés à plusieurs maladies musculaires. Le positionnement nucléaire dépend des microtubules (MTs), qui sont réorganisés depuis le centrosome, dans les myoblastes proliférants, vers l’enveloppe nucléaire (EN), dans les myotubes différenciés. Cette réorganisation s'accompagne de la redistribution des protéines centrosomales vers l’EN qui adopte le rôle de centre organisateur des microtubules (MTOC) lors de la différenciation myogénique. Néanmoins, les mécanismes sous-jacents restent inconnus. Ici, nous avons identifié les protéines Nesprin-1 et Sun1/2, localisées respectivement à la membrane nucléaire externe et interne, comme impliquées dans le recrutement de la fonction MTOC à l’EN. Les cellules déficientes en Nesprin-1 ou Sun1/2 ont montré une localisation altérée des protéines centrosomales dans le cytoplasme et l’absence des MTs depuis l’EN. De plus, Nesprin-1alpha, une myo-isoforme de Nesprin-1, s’associait aux protéines centrosomales Akap450, Pericentrin et Pcm1 dans les myotubes C2C12 et était suffisante pour corriger les défauts observés dans des cellules déplétées en Nesprin-1. Parmi les protéines centrosomales recrutées par Nesprin-1alpha, seule Akap450 semble nécessaire à la nucléation des MTs à l’EN. Ce processus, médié par Akap450 et Nesprin-1alpha, s’est avéré important pour le positionnement nucléaire lors du développement des myotubes. Ces résultats renforcent notre compréhension sur le lien causal entre des défauts lors de la formation du MTOC à l’EN et des défauts de positionnement nucléaire dans les dystrophies musculaires. / The accurate position of the nucleus during skeletal muscle formation seems to be important for muscle function, and defects have been associated with numerous muscle diseases. Nuclear positioning requires microtubules (MTs) which are reorganized from the centrosome in proliferating myoblasts to the nuclear envelope (NE) in differentiated myotubes. This dramatic MT reorganization is accompanied by a redistribution of proteins from the centrosome to the NE which thus takes over the function as a microtubule-organizing center (MTOC) during myogenic differentiation. However, the underlying mechanisms are still unknown. Here, we identified Nesprin-1 and Sun1/2, outer and inner nuclear membrane proteins, respectively, to be involved in the recruitment of MTOC function to the NE. Nesprin-1 or Sun1/2 deficient cells displayed mislocalization of centrosomal proteins to the cytoplasm and failed to regrow MTs from the NE. Moreover, the muscle-specific isoform of Nesprin-1, namely Nesprin-1alpha, was shown to be highly associated with the centrosomal proteins Akap450, Pericentrin and Pcm1 in C2C12 myotubes and to be sufficient to rescue the observed defects in Nesprin-1 depleted cells. Among the centrosomal proteins localizing at the NE during myogenic differentiation, solely Akap450 seemed to be required for MT nucleation. Akap450-Nesprin-1alpha-mediated MT nucleation from the NE was demonstrated to play an important role in nuclear positioning during myotube formation. These findings strengthen our understanding on how defects in MTOC formation at the NE can link to nuclear positioning defects in muscular dystrophies.
|
Page generated in 0.0504 seconds