1 |
Cerebrovascular responsiveness in brain injury and oedema.Reilly, Peter Lawrence. January 1978 (has links) (PDF)
Thesis (M.D. 1980) from the Department of Surgery, University of Adelaide.
|
2 |
Swelling-activated organic osmolyte decrease in brain tissue preparationsBothwell, John Henry Fordyce January 1999 (has links)
No description available.
|
3 |
Cerebrovascular responsiveness in brain injury and oedemaReilly, Peter Lawrence January 1978 (has links)
x, 148 leaves : / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (M.D. 1980) from the Dept. of Surgery, University of Adelaide
|
4 |
The role of aquaporin-4 in subarachnoid haemorrhageTait, Matthew James January 2011 (has links)
Introduction. The glial cell water channel aquaporin-4 (AQP4) plays an important ro le in brain oedema, astrocyte migration and neuronal excitability. Current theories of AQP4 function are based largely on experiments using AQP4 -1- mice. These mice have only been partially characterized. I therefore undertook a detailed investigation of baseline brain properties in AQP4 -1- mice. In the second part of my experiments I investigated the role of AQP4 in brain oedema in a mouse model of subarachnoid haemorrhage. Method. Gross anatomical measurements included estimates of brain and ventricle size. Neurons, astrocytes and oligodendrocytes were assessed using the neuronal nuclear marker NeuN, the astrocyte marker GFAP, and the myelin stain Luxol Fast Blue. The blood brain barrier was studied by electron microscopy and the horseradish peroxidase extravasation technique. A mouse model in which 30~1 of autologous blood was injected into the basal cisterns was used to reproduce subarachnoid haemorrhage. Brain water content, intracranial pressure and neurological score were compared in wildtype and AQP4 -/- mice. I also measured blood brain barrier permeability and the osmotic permeability of the glia lim itans, one of the routes of oedema elimination.
|
5 |
Computational modelling of brain transport phenomena : application of multicompartmental poroelasticityChou, Dean January 2016 (has links)
The global population is predicted to increase to around 11 billion by 2100. By 2050, the average age in the most populous age group will be over sixty. The ageing population (over sixty-five) is projected to exceed the number of children by 2047. These demographics imply that as the ageing population section increases, there will be a greater need for long-term care services. In order to adequately prepare against this trend, medical experts and evidence-driven policymakers are realising that personalised healthcare can help alleviate the burden related to the planning and commissioning of services allied to long-term care. Central to this picture is conditions that affect the brain - the most important organ of the human body. Dementia, stroke, and other conditions have a tremendous impact on loss of life, quality of life and healthcare cost. The challenge regarding brain disease is exacerbated further due to the difficulty regarding accessibility of this organ, but also due to the immense complexity regarding its morphology and functionality. In this context, advanced biophysical modelling is considered a promising option for studying brain pathophysiology and becomes a priority investment regarding routes for brain research. Simulations offer the promise of improved, clinically relevant, predictive information, acceleration for the pipeline of drug discovery/design and better planning of long-term care for patients. Within this paradigm, a particular model of water transport in the cerebral environment is essential. Numerous brain disorders arise from water imbalance in the cerebral environment, such as hydrocephalus (HCP), oedema and Chiari malformations to name a few. In this research, a novel multiscale model of fluid regulation and tissue displacement in the cerebral environment is developed, arising from the use of Multiple-network Poroelastic Theory (MPET). Characteristics of a four-network poroelastic model (4MPET) are first explored. Then, this model is extended to a fully dynamic (transient) six-network model (6MPET) via the addition of two new compartments, namely the glial cells compartment and the glymphatic system compartment. The introduction of these two compartments in the MPET paradigm reflects recent seminal findings in cerebral physiology, namely the extent and importance regarding transport/clearance of the perivascular spaces of the brain vasculature. We develop and present a numerical implementation of the 6MPET model, and we utilise this framework to analyse acute HCP and cerebral oedema in a variety of settings, in order to show the enhanced capability of the proposed 6MPET model compared to the classical 4MPET. Investigations of acute hydrocephalus through the fully dynamic 6MPET reveal compensatory trans-ependymal pressure behaviour in the glymphatic compartment. It was also shown that aquaporin-4 (AQP4) deficient expression exaggerates ventriculomegaly, and this too is demonstrated in acute hydrocephalus. Additionally, using the 6MPET model, one is able to witness three mitigating factors for cytotoxic oedema. Specifically, these are: reducing water mobility in the glial cells compartment, increasing the compliance of the glial cells compartment and finally AQP4-deficient expression.
|
6 |
Hypoxia and vascular nitric oxide bioavailability : implications for the pathophysiology of high-altitude illnessEvans, Kevin Andrew January 2009 (has links)
Introduction: Nitric oxide (NO) is an integral molecule implicated in the control of vascular function. It has been suggested that vascular dysfunction may lead to the development of acute mountain sickness (AMS), high-altitude cerebral oedema (HACE) and high-altitude pulmonary oedema (HAPE), though data to date remains scarce. Therefore, there is a clear need for further work to address the role of NO in the pathogenesis of high-altitude illness. Aims: There were two primary aims of the current work: (1) To examine whether hypoxia mediated changes in systemic NO metabolism are related to the development of AMS and sub-clinical pulmonary oedema and (2) to examine whether hypoxia mediated changes in the trans-cerebral exchange kinetics of NO metabolites are related to the development of AMS and headache. Hypothesis: We hypothesise that hypoxia will be associated with an increase in reactive oxygen species (ROS) formation, resulting in a decrease in vascular NO bioavailability (O2•- + NO → ONOO•-, k = 109 M.s-1). The reduction in NO will lead to vascular dysfunction and impaired oxygen (O2) delivery. Subsequent hypoxaemia will result in pulmonary vascular vasoconstriction and the development of sub-clinical pulmonary oedema within and mild brain swelling. Symptoms and reductions in NO bioavailability will be more pronounced in those who develop AMS since they are typically more hypoxaemic. Alternatively, a hypoxia mediated increase in NO, during vasodilatation, specifically across the cerebral circulation, may activate the trigminovascular system resulting in headache and by consequence, AMS. Methods: Study 1 – AMS symptoms, systemic venous NO concentration and nasal potential difference (NPD), used as a surrogate biomarker of extravascular lung oedema, were quantified in normoxia, after a 6hr passive exposure to 12% oxygen (O2) and immediately following a hypoxic maximal exercise challenge (≈6.5 hrs). Final measurements were 2 obtained two hours into (hypoxic) recovery. Study 2 – AMS, radial arterial and internal jugular venous NO metabolite concentrations and global cerebral blood flow (CBF), using the Kety-Schmidt technique, were assessed in normoxia and after a 9hr passive exposure to 12.9% O2. AMS was diagnosed if subjects presented with a combined Lake Louise score of ≥5 points and an Environmental Symptoms Questionnaire – Cerebral score of ≥0.7 points. Results: Hypoxia was associated with a reduction in total plasma NO, primarily due to a reduction in nitrate (NO3•) and a compensatory increase in red blood cell (RBC)-bound NO(P < 0.05 vs. normoxia) in both studies. Study 1 – Exercise reduced plasma nitrite (NO2•) (P< 0.05 vs. normoxia) whereas RBC-bound NO did not change. NO was not different in those who developed AMS (AMS+) compared to those who remained comparatively more healthy (AMS-) (P < 0.05). NPD was not affected by hypoxia or exercise and was not different between AMS+ and AMS- (P > 0.05). Study 2 – Hypoxia decreased arterial concentration of total plasma NO due primarily to a reduction in NO2•- and nitrate (NO3•-). Hypoxia did not alter the cerebral metabolism of RSNO, whereas the formation of RBC-bound NO increased. Discussion: These findings suggest that alterations in systemic or trans-cerebral NO metabolism are not implicated in the pathophysiology of AMS or sub-clinical pulmonary oedema. However, hypoxia was associated with an overall reduction in the total NO pool (NOx), whereas, selected alterations in more vasoactive NO metabolites were observed. Reductions in the partial pressure of O2 (pO2) were thought to be a key regulator in these changes. Overall net increases in RBC NO and corresponding reductions in plasma NO2• in the face of no alterations in NOx indicates that rather than being simply consumed, NO is reapportioned to other NO metabolites and this may be implicated in the pathophysiology of AMS.
|
7 |
Clinical Studies in the Acute Phase of Subarachnoid HaemorrhageZetterling, Maria January 2010 (has links)
Patients admitted in similar clinical condition after spontaneous SAH can develop very different clinical courses. This could depend on the severity of the initial global ischemic brain injury at ictus. In the present study, we explored relations between clinical and radiological parameters at admission that indicate a more severe initial impact, and the following days hormone levels and brain metabolism. Early global cerebral oedema (GCE) on computed tomography occurred in 57 % of SAH patients and was associated with a more severe clinical condition. The brain’s glucose metabolism, measured with intracerebral microdialysis (MD), changed the first days. MD-glucose was initially high and MD-pyruvate low. MD-glucose gradually decreased and MD-pyruvate and MD-lactate increased, suggesting a transition to a hyperglycolytic state. This was more pronounced in patients with GCE. Similar patterns were seen for interstitial non-transmitter amino acids. From initial low concentrations, they gradually increased in parallel with MD-pyruvate. The amino acid concentrations were higher for patients admitted in better clinical condition. Insulin lowered MD-glucose and MD-pyruvate even when plasma glucose values remained high. P-ACTH and S-cortisol were elevated early after SAH. GCE was associated with higher S-cortisol acutely. Urine cortisol excretion, indicating levels of free cortisol, were higher in patients in a better clinical condition. Suppressed P-ACTH occurred in periods of brain ischemia. We suggest that GCE on the first CT scan is a warning sign indicating increased vulnerability if the patient is exposed to compromised energy supply or increased energy demand. Reduction of blood glucose after SAH should be done with caution. The temporal change of the glucose metabolism and the amino acid concentrations probably reflect activated repair mechanisms. This should be considered in the intensive care treatment of SAH patients. Finally, our results support earlier observations that the response of the hypothalamic-pituitary-adrenal system is important in critical care.
|
8 |
L'érythropoïétine : un traitement de l'oedème cérébral de l'hypoxie cérébrale post-traumatiques / Erythropoïetin : a treatment for post-traumatic brain oedema and hypoxia.Bouzat, Pierre 11 February 2013 (has links)
L'œdème cérébral et l'hypoxie cérébrale post-traumatiques sont les acteurs principaux de l'apparition des lésions ischémiques secondaires. L'erythropoïétine (Epo) sous sa forme recombinante humaine possède une activité anti-oedémateuse dans un modèle expérimental de TC diffus. Son action sur l'hypoxie cérébrale post-traumatique reste néammoins méconnue. De plus, les effets indésirables hématologiques de l'Epo ont conduit à la synthèse de dérivés de l'Epo ne possèdant pas d'activité hématopoïétique comme l'érythropoïetine carbamylée (CEpo). Dans ce contexte, mon travail de thèse a eu pour but d'évaluer les propriétés de l'Epo et de la CEpo dans le modèle de TC diffus. Un traitement intraveineux par CEpo à la dose de 50 µg/Kg a ainsi permis de diminuer précocemment l'œdème cérébral post-traumatique évalué in vivo par IRM de diffusion et ex vivo par gravimétrie spécifique. Cette propriété a impliqué l'inhibition de la phosphorylation de la voie Erk et s'est accompagnée de l'amélioration des fonctions motrices et cognitives jusqu'à 10 jours après le TC. Après une étude de validation sur des rats sains soumis à différentes conditions d'oxygénation, une méthode de mesure IRM de la saturation locale en oxygène (lSO2) cérébrale combinant l'effet BOLD avec la mesure du volume sanguin cérébral a montré une diminution de l'oxygénation cérébrale post-traumatique. Cette hypoxie cérébrale n'était pas en lien avec une diminution du débit sanguin cérébral attestée par méthode de premier passage d'un agent de constraste. Un collapsus des capillaires cérébraux était par ailleurs retrouvé en microscopie électronique. L'Epo à la dose de 5000 UI/Kg a été capable de restaurer l'oxygénation cérébrale en diminuant l'œdème astrocytaire péricapillaire. L'ensemble de ce travail a permis d'établir les bénéfices d'un traitement par Epo ou par CEpo sur l'œdème cérébral et l'hypoxie cérébrale post-traumatiques. / Post-traumatic brain oedema and brain hypoxia play a key role for the development of secondary ischaemic lesions. Erythopoïetin (Epo) is an anti-oedematous agent in the impact-acceleration model. However its action on brain hypoxia remains unkonwn. Neuroprotective derivatives of Epo that lack haematopoïétic properties, like carbamylated Epo (CEpo), have been developped to counter Epo side effects. In this context, our study aimed to assess the effect of Epo and CEpo on post-traumatic diffuse brain oedema and brain oxygenation. CEpo (50 µg/Kg) decreased brain oedema assessed by diffusion-weighted MRI and specific gravimetry 6 hours after the trauma. The anti-oedematous effect of CEpo was linked to Erk inhibition and was associated with an improvement of cognitive and motor functions, evaluated until 10 days after the insult. MRI using the combination of BOLD contrast and blood volume fraction measurement demonstrated a decrease of local brain oxygenation in our model, without franck ischemia (measurement of mild transit time by a first passage method). Epo (5000 UI/Kg) improved brain oxygenation by decreasing post-traumatic cerebral capillaries collapse due to astrocytic end-foot swelling. All these results demonstrated that Epo and CEpo could be seen as promising neuroprotective agents in traumatic brain injury.
|
9 |
L'activation des α-sécrétases : une nouvelle stratégie thérapeutique pour le traitement du traumatisme crânien / Activation of a-secretases : a novel therapeutic strategy for the treatment of traumatic brain injurySiopi, Eleni 03 July 2012 (has links)
La gravité du traumatisme crânien (TC) dépend de la sévérité immédiate des lésions primaires mais également de leur aggravation dans les heures et les jours qui suivent le TC, avec l’apparition de lésions secondaires. La neuro-inflammation constitue l’une des cascades physiopathologiques post-TC dont le contrôle a été décrit comme une stratégie neuroprotectrice potentielle. Elle compromet le taux de la forme soluble α du précurseur du peptide ß amyloÏde, sAPPα, un neuroprotecteur endogène issu de l’action des enzymes α-sécrétases (ADAMs). Dans ce contexte, mon travail de thèse a eu pour but d’étudier l’intérêt thérapeutique des composés pharmacologiques modulant le taux de sAPPα post-TC sur les conséquences biochimiques, histopathologiques et fonctionnelles, à court et à long terme, dans un modèle de TC par percussion mécanique chez la souris. Parmi les différents composés, la minocycline, une tetracycline de 2e génération aux effets anti-inflammatoires, et l’étazolate, une pyrazolopyridine récemment décrite comme activateur des α-sécrétases, ont été sélectionnés. Le traitement anti-inflammatoire par la minocycline permet de restaurer le taux de la sAPPα, et cet effet dans la phase précoce est accompagné d’une réduction des conséquences histopathologiques (atrophie callosale et striatale, lésion des bulbes olfactifs et ventriculomégalie) à 3 mois post-TC. Sur le plan fonctionnel, le test d’aversion olfactive a été pour la première fois mis au point sur un modèle expérimental de TC et a permis de révéler un déficit olfactif persistant dans notre modèle. De plus, un déficit cognitif persistant a été également mis en évidence par le test NORT « Novel Object Recognition Test ». Le même traitement par la minocycline a permis de corriger ces déficits olfactif et cognitif à court et à long terme (3 mois) post-TC. Les résultats obtenus sur l’étazolate (étude de fenêtre thérapeutique, étude d’effet-dose) ont montré, pour la première fois dans un modèle de lésion cérébrale, son potentiel anti-inflammatoire et anti-œdémateux, associé à la restauration du taux de la sAPPα, avec une fenêtre thérapeutique d’au moins de 2h. Le même traitement réduit les conséquences histopathologiques (activation microgliale, ventriculomégalie, lésion des bulbes olfactives) et fonctionnelles (hyperactivité locomotrice, déficit cognitif), à court à long terme (3 mois) post-TC. En conclusion, l’ensemble de ce travail a permis d’établir les bénéfices d’une stratégie pharmacologique s’opposant à la fois à la neuro-inflammation et à la chute du taux de la sAPPα dans la phase précoce de TC avec une amélioration histologique et fonctionnelle à long terme, soulignant son intérêt thérapeutique. Il est important de souligner que la minocycline est déjà entrée en essai clinique pour le traitement de TC, et que malgré le peu de données précliniques, l’étazolate (EHT-0202) est tout récemment entré en phase II pour le traitement de la maladie d’Alzheimer. / The severity of the sequelae of traumatic brain injury (TBI) depends on the extent of primary damage as well as the implication of secondary injury cascades that are triggered within the hours and days post- insult. Neuroinflammation is an important post-TBI cascade whose inhibition has been described as a potential neuroprotective strategy. Neuroinflammation has been associated to the decrease of an endogenous neuroprotector, the soluble form α of the amyloid precursor protein (sAPPα), generated by the activity of the enzymes α-secretases or ADAMs. The aim of this work was to evaluate the therapeutic interest of pharmacological compounds that restore sAPPα levels on short- and long-term biochemical, histological and functional outcome in a mouse model of TBI by mechanical percussion. Among the potential candidates, the compounds selected were minocycline, a tetracycline that exerts anti-inflammatory activity, and etazolate, a pyrazolopyridine that activates α-secretases. The anti-inflammatory treatment with minocycline was able to restore post-TBI sAPPα levels, and this acute effect was accompanied by lasting neuroprotection, namely reduction of lesion size (corpus callosum, striatum and olfactory bulbs) and ventriculomegaly and attenuation of glial reactivity. The olfactory aversion test, developped for the first time in experimental TBI, unraveled a persistant olfactory deficit. Moreover, a durable cognitive deficit was revealed by the Novel Object Recognition Task (NORT). Treatment with minocycline was able to attenuate both the olfactory and cognitive deficits in an effective manner. Moreover, the results obtained in the pharmacological study with etazolate (therapeutic window, dose-response) demonstrated, for the very first time, the anti-inflammatory and anti-oedematous efficacy of etazolate, when administered at least 2 hours post-TBI. The same treatment protocol was also able to attenuate sAPPα levels and offered persistent neuroprotection, namely reduction of lesion size (ventriculomegaly, olfactory bulb lesion) and microglial activation, and attenuation of functional deficits (hyperactivity, cognitive deficit). In conclusion, the findings of this work highlight the therapeutic efficacy of compounds that attenuate neuroinflammation and restore sAPPa levels within the acute and critical post-TBI aftermath, on histological and functional outcome. It is worth noting that minocycline is actually in a clinical trial for the treatment of traumatic brain injury and etazolate (EHT 0202), despite the poor experimental data available, has managed to enter a clinical trial for the treatment of Alzheimer’s disease.
|
Page generated in 0.0668 seconds