Spelling suggestions: "subject:"cerebrosides"" "subject:"cerebros""
1 |
AAV-Mediated Gene Delivery Corrects CNS Lysosomal Storage in Cats with Juvenile Sandhoff DiseaseRockwell, Hannah January 2013 (has links)
Thesis advisor: Thomas N. Seyfried / Sandhoff Disease (SD) is an autosomal recessive neurodegenerative disease caused by a mutation in the Hexb gene for the β-subunit of β-hexosaminidase A, resulting in the inability to catabolize ganglioside GM2 within the lysosomes. SD presents with an accumulation of GM2 and its asialo derivative GA2 primarily in the CNS. Myelin-enriched glycolipids, cerebrosides and sulfatides, are also decreased in SD corresponding with dysmyelination. At present, no treatment exists for SD. Previous studies have shown the therapeutic benefit of using adeno-associated virus (AAV) vector-mediated gene therapy in the treatment of SD in murine and feline models. In this study, CNS tissue was evaluated from SD cats (4-6 week old) treated with bilateral injections of AAVrh8 expressing feline β-hexosaminidase α and β into the thalamus and deep cerebellar nuclei (Thal/DCN) or into the thalamus combined with intracerebroventricular injections (Thal/ICV). Both groups of treated animals had previously shown improved quality of life and absence of whole-body tremors. The activity of β-hexosaminidase was significantly elevated whereas the content of GM2 and GA2 was significantly decreased in tissue samples taken from the cerebral cortex, cerebellum, thalamus, and cervical intumescence. Treatment also increased levels of myelin-enriched cerebrosides and sulfatides in the cortex and thalamus. This study demonstrates the therapeutic benefits of AAV treatment for feline SD and suggests a similar potential for human SD patients. / Thesis (MS) — Boston College, 2013. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Biology.
|
2 |
The Role of Sulfatide in the Development and Maintenance of the Nodal and Paranodal Domains in the Peripheral Nervous SystemHerman, Heather 23 April 2012 (has links)
Sulfatide is a galactolipid and a major lipid component of the myelin sheath. Its production is catalyzed by the enzyme cerebroside sulfotransferase (CST). To determine the functions of sulfatide, the gene encoding CST was genetically disrupted resulting in mice incapable of sulfatide synthesis. Using these mice, it has been shown in the central nervous system (CNS) that sulfatide is essential for normal myelin synthesis and stability even though the onset of myelination is not impaired. Additionally, proper initial clustering of paranodal proteins and cluster maintenance of nodal proteins is impaired suggesting that paranodal domains are important for long-term node stability. In contrast to the CNS, a requirement for sulfatide in the initiation of myelination, and in initiation of paranodal and nodal clustering or in the long-term maintenance of these clusters in the peripheral nervous system (PNS) has not been analyzed. Therefore, we have employed a combination of electron microscopic, immunocytochemical, and confocal microscopic analyses of the CST KO mice to determine the role of sulfatide in PNS myelination and onset of protein domain formation and maintenance. For these studies we have quantified myelin thickness, paranodal structural integrity, and the number of paranodal and nodal protein clusters in the CST KO and wild type mice at 4 days, 7 days, and 10 months of age. Our findings indicate that myelination onset is not delayed in the absence of sulfatide and that both the node and paranode are grossly normal; however, closer analysis reveals that paranodal junctions are compromised, Schwann cell microvilli are disoriented and the myelin-axon interface along the internodal region is transiently disrupted. In addition, we report that the paranodal myelin protein neurofascin 155 (Nfasc155) shows a transient decrease in initial clustering in the CST null mice at 4 days of age that is restored to WT levels by 7 days of age that is also maintained in the adult mice. Whereas nodal clustering of neuronal voltage-gated sodium channels is initially normal, cluster number is significantly but also transiently reduced by 7 days of age. By 10 months of age, the number of sodium channel clusters is restored to normal levels. In contrast, clustering of neither the paranodal neuronal protein contactin nor the myelin nodal protein gliomedin is altered at any of the ages studied. Together our findings suggest that sulfatide is not essential for PNS myelination or for protein domain formation in contrast to its more vital role in the development and maintenance of the CNS.
|
3 |
Elicitors and Phytotoxins from the Blackleg Fungus: Structure, Bioactivity and BiosynthesisYu, Yang 23 December 2008
The phytopathogenic fungus <i>Leptosphaeria maculans</i> can cause blackleg disease on crucifers, which results in significant yield losses. Fungal diseases involve interactions between pathogenic fungi and host plants. One aspect of these interactions is mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins and elicitors as well as phytoanticipins and phytoalexins are metabolites produced by fungi and plants, respectively. This thesis describes and discusses the isolation, structure, biological activity and biosynthesis of the secondary metabolites produced by L. maculans.<p>
The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins produced by <i>L. maculans</i> in a chemically defined medium lead to the isolation of general elicitors, <i>sirodesmin PL</i> (165) and <i>deacetylsirodesmin PL</i> (166), and specific elicitors, <i>cerebrosides C</i> (14) and D (31) from minimum medium (MM) culture under standard conditions. The known phytotoxins sirodesmin PL (165) and deacetylsirodesmin PL (166) induced the production of <i>phytoalexin spirobrassinin</i> (122) in both resistant plant species (brown mustard, <i>Brassica juncea</i> cv. Cutlass) and susceptible plant species (canola, B. napus cv. Westar). A mixture of cerebrosides C (14) and D (31) induced the production of the phytoalexin rutalexin (127) in resistant plant species (brown mustard, B. juncea cv. Cutlass) but not in susceptible plant species (canola, B. napus cv. Westar). New metabolites leptomaculins A-E (267-269, 272 and 274) and deacetylleptomaculins C-E (270, 273 and 275) were isolated from elicitor-phytotoxin active fractions but did not display detectable elicitor activity or phytotoxicity after purification.<p>
New metabolites maculansins A (299) and B (300), which were not detected in cultures of L. maculans incubated in MM, were isolated from cultures of <i>L. maculans</i> incubated in potato dextrose broth (PDB). Maculansins A (299) and B (300) displayed higher phytotoxicity on brown mustard than on canola and white mustard (<i>Sinapis alba cv. Ochre</i>) but did not elicit detectable production of phytoalexins in either brown mustard or canola. Metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was produced in higher amount in cultures of L. maculans incubated in PDB than in MM and displayed strong inhibition effect on the root growth of brown mustard and canola.
<i>L. maculans</i> incubated in MM amended with high concentration of NaCl produced a new metabolite, 8-hydroxynaphthalene-1-sulfate (293), and a known metabolite, bulgarein (294), which are likely involved in the self-protection.
The potential intermediates involved in the biosynthesis of sirodesmin PL (165) were investigated using deuterium labeled precursors: [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b), [5,5-2H2]phomamide (171a), [2,3,3-2H3]-L-serine (233d) and [5,5-2H2]cyclo-L-tyr-L-ser (252a). Intact incorporation of [5,5-2H2]phomamide (171a) into sirodesmin PL (165) suggested that leptomaculin D (272) and E (274), and deacetylleptomaculin D (273) and E (275) are not intermediates in the biosynthesis of sirodesmin PL (165). They are more likely the catabolic metabolites of sirodesmin PL (165). Phomamide (171), the intermediate in the biosynthetic pathway of sirodesmin PL (165), is likely biosynthesized by coupling of prenyl tyrosine (312) with serine (233) rather than prenylation of cyclo-L-tyr-L-ser (252). When [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), and E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b) were fed into cultures of L. maculans, a â proton exchange was detected by 1H NMR through intrinsic steric isotope effect, which occurs before the formation of phomamide (171). The biosynthesis and catabolism of sirodesmin PL (165) were proposed based on the results obtained in this work.
|
4 |
Elicitors and Phytotoxins from the Blackleg Fungus: Structure, Bioactivity and BiosynthesisYu, Yang 23 December 2008 (has links)
The phytopathogenic fungus <i>Leptosphaeria maculans</i> can cause blackleg disease on crucifers, which results in significant yield losses. Fungal diseases involve interactions between pathogenic fungi and host plants. One aspect of these interactions is mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins and elicitors as well as phytoanticipins and phytoalexins are metabolites produced by fungi and plants, respectively. This thesis describes and discusses the isolation, structure, biological activity and biosynthesis of the secondary metabolites produced by L. maculans.<p>
The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins produced by <i>L. maculans</i> in a chemically defined medium lead to the isolation of general elicitors, <i>sirodesmin PL</i> (165) and <i>deacetylsirodesmin PL</i> (166), and specific elicitors, <i>cerebrosides C</i> (14) and D (31) from minimum medium (MM) culture under standard conditions. The known phytotoxins sirodesmin PL (165) and deacetylsirodesmin PL (166) induced the production of <i>phytoalexin spirobrassinin</i> (122) in both resistant plant species (brown mustard, <i>Brassica juncea</i> cv. Cutlass) and susceptible plant species (canola, B. napus cv. Westar). A mixture of cerebrosides C (14) and D (31) induced the production of the phytoalexin rutalexin (127) in resistant plant species (brown mustard, B. juncea cv. Cutlass) but not in susceptible plant species (canola, B. napus cv. Westar). New metabolites leptomaculins A-E (267-269, 272 and 274) and deacetylleptomaculins C-E (270, 273 and 275) were isolated from elicitor-phytotoxin active fractions but did not display detectable elicitor activity or phytotoxicity after purification.<p>
New metabolites maculansins A (299) and B (300), which were not detected in cultures of L. maculans incubated in MM, were isolated from cultures of <i>L. maculans</i> incubated in potato dextrose broth (PDB). Maculansins A (299) and B (300) displayed higher phytotoxicity on brown mustard than on canola and white mustard (<i>Sinapis alba cv. Ochre</i>) but did not elicit detectable production of phytoalexins in either brown mustard or canola. Metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was produced in higher amount in cultures of L. maculans incubated in PDB than in MM and displayed strong inhibition effect on the root growth of brown mustard and canola.
<i>L. maculans</i> incubated in MM amended with high concentration of NaCl produced a new metabolite, 8-hydroxynaphthalene-1-sulfate (293), and a known metabolite, bulgarein (294), which are likely involved in the self-protection.
The potential intermediates involved in the biosynthesis of sirodesmin PL (165) were investigated using deuterium labeled precursors: [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b), [5,5-2H2]phomamide (171a), [2,3,3-2H3]-L-serine (233d) and [5,5-2H2]cyclo-L-tyr-L-ser (252a). Intact incorporation of [5,5-2H2]phomamide (171a) into sirodesmin PL (165) suggested that leptomaculin D (272) and E (274), and deacetylleptomaculin D (273) and E (275) are not intermediates in the biosynthesis of sirodesmin PL (165). They are more likely the catabolic metabolites of sirodesmin PL (165). Phomamide (171), the intermediate in the biosynthetic pathway of sirodesmin PL (165), is likely biosynthesized by coupling of prenyl tyrosine (312) with serine (233) rather than prenylation of cyclo-L-tyr-L-ser (252). When [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), and E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b) were fed into cultures of L. maculans, a â proton exchange was detected by 1H NMR through intrinsic steric isotope effect, which occurs before the formation of phomamide (171). The biosynthesis and catabolism of sirodesmin PL (165) were proposed based on the results obtained in this work.
|
Page generated in 0.031 seconds