• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phytoalexins from crucifers : probing detoxification pathways in <i>Sclerotinia sclerotiorum</i>

Hossain, Mohammad 10 April 2007
This thesis investigates two aspects of phytoalexin metabolism by the phytopathogenic fungus <i>Sclerotinia sclerotiorum</i> (Lib) de Bary: (i) determination of detoxification pathways of structurally different molecules; (ii) design and synthesis of potential inhibitors of enzyme(s) involved in detoxification steps.<p>First, the transformations of important cruciferous phytoalexins by the economically important stem rot fungus, <i>S. sclerotiorum</i>, were investigated. During these studies a number of new metabolic products were isolated, their chemical structures were determined using spectroscopic techniques, and further confirmed by synthesis. The metabolic products did not show detectable antifungal activity against <i>S. sclerotiorum </i> which indicated that these metabolic transformations were detoxification processes. Overall, the results of these transformations suggested that <i>S. sclerotiorum</i> produces various enzymes that can detoxify cruciferous phytoalexins via different pathways. While the detoxifications of strongly and moderately antifungal phytoalexins such as brassilexin, sinalexin, and 1-methoxybrassinin were fast and led to glucosylated products, the transformations of the weakly antifungal phytoalexins brassicanal A, spirobrassinin and 1-methoxyspirobrassinin were very slow and yielded non-glucosylated compounds.<p>Next, the design of potentially selective inhibitors of the brassinin detoxification enzyme, BGT, was sought. Two sets of potential inhibitors of BGT were designed: (i) a group was based on the structure of brassinin, where the indole ring of brassinin was replaced with benzofuran, thianaphthene, 7-azaindole and pyrazolo[1,5-a]pyridine and/or the position of side chain was changed from C-3 to C-2; and (ii) another group based on the structure of camalexin where the thiazole ring of camalexin was replaced with a phenyl group. The syntheses and chemical characterization of these potential detoxification inhibitors, along with their antifungal activity, as well as screening using fungal cultures and cell-free extracts of <i>S. sclerotiorum</i>, were examined. The results of these screening indicated that 3-phenylindoles, 3-phenylbenzofuran, 5-fluorocamalexin, methyl (indol-2-yl)methyl-dithiocarbamate, methyl (benzofuran-3-yl)methyldithiocarbamate and methyl (benzo-furan-2-yl)methyldithiocarbamate could slow down the rate of detoxification of brassinin in fungal cultures and also in cell-free extracts of <i>S. sclerotiorum</i>. Among the designed compounds, 3-phenylindole appeared to be the best inhibitor both in fungal cultures and in cell-free extracts. Metabolism studies of all the designed compounds using fungal cultures of <i>S. sclerotiorum</i> indicated that they were metabolized by <i>S. sclerotiorum</i> to glucosyl derivatives, although at much slower rates.<p>It is concluded that some inhibitors that can slow down the rate of metabolism of brassinin could be good leading structures to design more active inhibitors of BGT.
2

Phytoalexins from crucifers : probing detoxification pathways in <i>Sclerotinia sclerotiorum</i>

Hossain, Mohammad 10 April 2007 (has links)
This thesis investigates two aspects of phytoalexin metabolism by the phytopathogenic fungus <i>Sclerotinia sclerotiorum</i> (Lib) de Bary: (i) determination of detoxification pathways of structurally different molecules; (ii) design and synthesis of potential inhibitors of enzyme(s) involved in detoxification steps.<p>First, the transformations of important cruciferous phytoalexins by the economically important stem rot fungus, <i>S. sclerotiorum</i>, were investigated. During these studies a number of new metabolic products were isolated, their chemical structures were determined using spectroscopic techniques, and further confirmed by synthesis. The metabolic products did not show detectable antifungal activity against <i>S. sclerotiorum </i> which indicated that these metabolic transformations were detoxification processes. Overall, the results of these transformations suggested that <i>S. sclerotiorum</i> produces various enzymes that can detoxify cruciferous phytoalexins via different pathways. While the detoxifications of strongly and moderately antifungal phytoalexins such as brassilexin, sinalexin, and 1-methoxybrassinin were fast and led to glucosylated products, the transformations of the weakly antifungal phytoalexins brassicanal A, spirobrassinin and 1-methoxyspirobrassinin were very slow and yielded non-glucosylated compounds.<p>Next, the design of potentially selective inhibitors of the brassinin detoxification enzyme, BGT, was sought. Two sets of potential inhibitors of BGT were designed: (i) a group was based on the structure of brassinin, where the indole ring of brassinin was replaced with benzofuran, thianaphthene, 7-azaindole and pyrazolo[1,5-a]pyridine and/or the position of side chain was changed from C-3 to C-2; and (ii) another group based on the structure of camalexin where the thiazole ring of camalexin was replaced with a phenyl group. The syntheses and chemical characterization of these potential detoxification inhibitors, along with their antifungal activity, as well as screening using fungal cultures and cell-free extracts of <i>S. sclerotiorum</i>, were examined. The results of these screening indicated that 3-phenylindoles, 3-phenylbenzofuran, 5-fluorocamalexin, methyl (indol-2-yl)methyl-dithiocarbamate, methyl (benzofuran-3-yl)methyldithiocarbamate and methyl (benzo-furan-2-yl)methyldithiocarbamate could slow down the rate of detoxification of brassinin in fungal cultures and also in cell-free extracts of <i>S. sclerotiorum</i>. Among the designed compounds, 3-phenylindole appeared to be the best inhibitor both in fungal cultures and in cell-free extracts. Metabolism studies of all the designed compounds using fungal cultures of <i>S. sclerotiorum</i> indicated that they were metabolized by <i>S. sclerotiorum</i> to glucosyl derivatives, although at much slower rates.<p>It is concluded that some inhibitors that can slow down the rate of metabolism of brassinin could be good leading structures to design more active inhibitors of BGT.
3

Elicitors and Phytotoxins from the Blackleg Fungus: Structure, Bioactivity and Biosynthesis

Yu, Yang 23 December 2008
The phytopathogenic fungus <i>Leptosphaeria maculans</i> can cause blackleg disease on crucifers, which results in significant yield losses. Fungal diseases involve interactions between pathogenic fungi and host plants. One aspect of these interactions is mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins and elicitors as well as phytoanticipins and phytoalexins are metabolites produced by fungi and plants, respectively. This thesis describes and discusses the isolation, structure, biological activity and biosynthesis of the secondary metabolites produced by L. maculans.<p> The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins produced by <i>L. maculans</i> in a chemically defined medium lead to the isolation of general elicitors, <i>sirodesmin PL</i> (165) and <i>deacetylsirodesmin PL</i> (166), and specific elicitors, <i>cerebrosides C</i> (14) and D (31) from minimum medium (MM) culture under standard conditions. The known phytotoxins sirodesmin PL (165) and deacetylsirodesmin PL (166) induced the production of <i>phytoalexin spirobrassinin</i> (122) in both resistant plant species (brown mustard, <i>Brassica juncea</i> cv. Cutlass) and susceptible plant species (canola, B. napus cv. Westar). A mixture of cerebrosides C (14) and D (31) induced the production of the phytoalexin rutalexin (127) in resistant plant species (brown mustard, B. juncea cv. Cutlass) but not in susceptible plant species (canola, B. napus cv. Westar). New metabolites leptomaculins A-E (267-269, 272 and 274) and deacetylleptomaculins C-E (270, 273 and 275) were isolated from elicitor-phytotoxin active fractions but did not display detectable elicitor activity or phytotoxicity after purification.<p> New metabolites maculansins A (299) and B (300), which were not detected in cultures of L. maculans incubated in MM, were isolated from cultures of <i>L. maculans</i> incubated in potato dextrose broth (PDB). Maculansins A (299) and B (300) displayed higher phytotoxicity on brown mustard than on canola and white mustard (<i>Sinapis alba cv. Ochre</i>) but did not elicit detectable production of phytoalexins in either brown mustard or canola. Metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was produced in higher amount in cultures of L. maculans incubated in PDB than in MM and displayed strong inhibition effect on the root growth of brown mustard and canola. <i>L. maculans</i> incubated in MM amended with high concentration of NaCl produced a new metabolite, 8-hydroxynaphthalene-1-sulfate (293), and a known metabolite, bulgarein (294), which are likely involved in the self-protection. The potential intermediates involved in the biosynthesis of sirodesmin PL (165) were investigated using deuterium labeled precursors: [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b), [5,5-2H2]phomamide (171a), [2,3,3-2H3]-L-serine (233d) and [5,5-2H2]cyclo-L-tyr-L-ser (252a). Intact incorporation of [5,5-2H2]phomamide (171a) into sirodesmin PL (165) suggested that leptomaculin D (272) and E (274), and deacetylleptomaculin D (273) and E (275) are not intermediates in the biosynthesis of sirodesmin PL (165). They are more likely the catabolic metabolites of sirodesmin PL (165). Phomamide (171), the intermediate in the biosynthetic pathway of sirodesmin PL (165), is likely biosynthesized by coupling of prenyl tyrosine (312) with serine (233) rather than prenylation of cyclo-L-tyr-L-ser (252). When [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), and E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b) were fed into cultures of L. maculans, a â proton exchange was detected by 1H NMR through intrinsic steric isotope effect, which occurs before the formation of phomamide (171). The biosynthesis and catabolism of sirodesmin PL (165) were proposed based on the results obtained in this work.
4

Elicitors and Phytotoxins from the Blackleg Fungus: Structure, Bioactivity and Biosynthesis

Yu, Yang 23 December 2008 (has links)
The phytopathogenic fungus <i>Leptosphaeria maculans</i> can cause blackleg disease on crucifers, which results in significant yield losses. Fungal diseases involve interactions between pathogenic fungi and host plants. One aspect of these interactions is mediated by secondary metabolites produced by both fungi and host plants. Phytotoxins and elicitors as well as phytoanticipins and phytoalexins are metabolites produced by fungi and plants, respectively. This thesis describes and discusses the isolation, structure, biological activity and biosynthesis of the secondary metabolites produced by L. maculans.<p> The elicitor-toxin activity bioassay guided isolation of elicitors and phytotoxins produced by <i>L. maculans</i> in a chemically defined medium lead to the isolation of general elicitors, <i>sirodesmin PL</i> (165) and <i>deacetylsirodesmin PL</i> (166), and specific elicitors, <i>cerebrosides C</i> (14) and D (31) from minimum medium (MM) culture under standard conditions. The known phytotoxins sirodesmin PL (165) and deacetylsirodesmin PL (166) induced the production of <i>phytoalexin spirobrassinin</i> (122) in both resistant plant species (brown mustard, <i>Brassica juncea</i> cv. Cutlass) and susceptible plant species (canola, B. napus cv. Westar). A mixture of cerebrosides C (14) and D (31) induced the production of the phytoalexin rutalexin (127) in resistant plant species (brown mustard, B. juncea cv. Cutlass) but not in susceptible plant species (canola, B. napus cv. Westar). New metabolites leptomaculins A-E (267-269, 272 and 274) and deacetylleptomaculins C-E (270, 273 and 275) were isolated from elicitor-phytotoxin active fractions but did not display detectable elicitor activity or phytotoxicity after purification.<p> New metabolites maculansins A (299) and B (300), which were not detected in cultures of L. maculans incubated in MM, were isolated from cultures of <i>L. maculans</i> incubated in potato dextrose broth (PDB). Maculansins A (299) and B (300) displayed higher phytotoxicity on brown mustard than on canola and white mustard (<i>Sinapis alba cv. Ochre</i>) but did not elicit detectable production of phytoalexins in either brown mustard or canola. Metabolite 2,4-dihydroxy-3,6-dimethylbenzaldehyde (212) was produced in higher amount in cultures of L. maculans incubated in PDB than in MM and displayed strong inhibition effect on the root growth of brown mustard and canola. <i>L. maculans</i> incubated in MM amended with high concentration of NaCl produced a new metabolite, 8-hydroxynaphthalene-1-sulfate (293), and a known metabolite, bulgarein (294), which are likely involved in the self-protection. The potential intermediates involved in the biosynthesis of sirodesmin PL (165) were investigated using deuterium labeled precursors: [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b), [5,5-2H2]phomamide (171a), [2,3,3-2H3]-L-serine (233d) and [5,5-2H2]cyclo-L-tyr-L-ser (252a). Intact incorporation of [5,5-2H2]phomamide (171a) into sirodesmin PL (165) suggested that leptomaculin D (272) and E (274), and deacetylleptomaculin D (273) and E (275) are not intermediates in the biosynthesis of sirodesmin PL (165). They are more likely the catabolic metabolites of sirodesmin PL (165). Phomamide (171), the intermediate in the biosynthetic pathway of sirodesmin PL (165), is likely biosynthesized by coupling of prenyl tyrosine (312) with serine (233) rather than prenylation of cyclo-L-tyr-L-ser (252). When [3,3-2H2]-L-tyrosine (251a), [3,3-2H2]O-prenyl-L-tyrosine (312a), and E-[3,3,5,5,5-2H5]O-prenyl-L-tyrosine (312b) were fed into cultures of L. maculans, a â proton exchange was detected by 1H NMR through intrinsic steric isotope effect, which occurs before the formation of phomamide (171). The biosynthesis and catabolism of sirodesmin PL (165) were proposed based on the results obtained in this work.

Page generated in 0.2958 seconds