• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude d'un grand détecteur TPC Micromegas pour l'ILC

Wang, Wenxin 24 June 2013 (has links) (PDF)
Une grande 'Chambre à Projection Temporelle' (TPC) est un candidat pour la détection et la mesure des traces chargées auprès de l'ILC, collisionneur linéaire d'électrons et de positons de 31 km permettant d'atteindre des énergies dans le centre de masse de 250 GeV à 1 TeV. Le travail de R&D décrit dans cette thèse porte sur un type nouveau de TPC, dont la lecture est assurée par des Micromégas à anode résistive. Ce dispositif permet de répartir le signal électrique sur plusieurs carreaux, même lorsque la charge est déposée sur un seul carreau. Il permet aussi de protéger l'électronique, ce qui est utilisé dans notre prototype pour miniaturiser les cartes de lecture. Dans ce travail, des modules Micromégas ont été testés et caractérisés, dans un premier temps, en faisceau, un par un au centre de la chambre, puis 7 modules montés en même temps de façon à couvrir la surface. Egalement, des tests sur un banc équipé d'une source de ⁵⁵Fe ont permis de caractériser les 7 modules utilisés. Une résolution en position de 60 microns par ligne de carreaux est obtenue à petite distance de dérive. L'uniformité est aussi évaluée, et des distorsions pouvant atteindre environ 500 microns sont observées. L'ensemble des résultats démontre l'adéquation de ce type de lecture à la TPC pour l'ILC. La fraction de retour des ions est également mesurée à l'aide d'un détecteur de même géométrie et avec le même gaz que ceux utilisés dans ces tests, et la loi en rapport inverse des champs est validée à nouveau dans ces conditions. La même technique est appliquée à la réalisation d'un imageur neutron, consistant en une TPC Micromégas 'plate' précédée d'un film convertisseur de 1mm d'épaisseur. Les protons éjectés par les neutrons sont 'suivis à la trace' dans le volume gazeux, ce qui permet de reconstruire avec une précision meilleure que le millimètre le point d'origine du neutron.
2

Etude d’un grand détecteur TPC Micromegas pour l’ILC / A Large Area Micromegas TPC for Tracking at the ILC

Wang, Wenxin 24 June 2013 (has links)
Une grande ‘Chambre à Projection Temporelle’ (TPC) est un candidat pour la détection et la mesure des traces chargées auprès de l’ILC, collisionneur linéaire d’électrons et de positons de 31 km permettant d’atteindre des énergies dans le centre de masse de 250 GeV à 1 TeV. Le travail de R&D décrit dans cette thèse porte sur un type nouveau de TPC, dont la lecture est assurée par des Micromégas à anode résistive. Ce dispositif permet de répartir le signal électrique sur plusieurs carreaux, même lorsque la charge est déposée sur un seul carreau. Il permet aussi de protéger l’électronique, ce qui est utilisé dans notre prototype pour miniaturiser les cartes de lecture. Dans ce travail, des modules Micromégas ont été testés et caractérisés, dans un premier temps, en faisceau, un par un au centre de la chambre, puis 7 modules montés en même temps de façon à couvrir la surface. Egalement, des tests sur un banc équipé d’une source de ⁵⁵Fe ont permis de caractériser les 7 modules utilisés. Une résolution en position de 60 microns par ligne de carreaux est obtenue à petite distance de dérive. L’uniformité est aussi évaluée, et des distorsions pouvant atteindre environ 500 microns sont observées. L’ensemble des résultats démontre l’adéquation de ce type de lecture à la TPC pour l’ILC. La fraction de retour des ions est également mesurée à l’aide d’un détecteur de même géométrie et avec le même gaz que ceux utilisés dans ces tests, et la loi en rapport inverse des champs est validée à nouveau dans ces conditions. La même technique est appliquée à la réalisation d’un imageur neutron, consistant en une TPC Micromégas ‘plate’ précédée d’un film convertisseur de 1mm d’épaisseur. Les protons éjectés par les neutrons sont ‘suivis à la trace’ dans le volume gazeux, ce qui permet de reconstruire avec une précision meilleure que le millimètre le point d’origine du neutron. / The study of the fundamental building blocks of matter necessitates always more powerful accelerators. New particles are produced in high energy collisions of protons or electrons. The by-Products of these collisions are detected in large apparatus surrounding the interaction point. The 125 GeV Higgs particle discovered at LHC will be studied in detail in the next e⁺e⁻ collider. The leading project for this is called ILC. The team that I joined is working on the R&D for a Time Projection Chamber (TPC) to detect the charged tracks by the ionization they leave in a gas volume, optimised for use at ILC. This primary ionization is amplified by the so-Called Micromegas device, with a charge-Sharing anode made of a resistive-Capacitive coating. After a presentation of the physics motivation for the ILC and ILD detector, I will review the principle of operation of a TPC (Chapter 2) and underline the advantages of the Micromegas readout with charge sharing. The main part of this PhD work concerns the detailed study of up to 12 prototypes of various kinds. The modules and their readout electronics are described in Chapter 3. A test-Bench setup has been assembled at CERN (Chapter 4) to study the response to a ⁵⁵Fe source, allowing an energy calibration and a uniformity study. In Chapter 5, the ion backflow is studied using a bulk Micromegas and the gas gain is measured using a calibrated electronics chain. With the same setup, the electron transparency is measured as a function of the field ratio (drift/amplification). Also, several beam tests have been carried out at DESY with a 5 GeV electron beam in a 1 T superconducting magnet. These beam tests allowed the detailed study of the spatial resolution. In the final test, the endplate was equipped with seven modules, bringing sensitivity to misalignment and distortions. Such a study required software developments (Chapter 6) to make optimal use of the charge sharing and to reconstruct multiple tracks through several modules with a Kalman filter algorithm. The results of these studies are given in Chapter 7. The TPC technique has been applied to neutron imaging in collaboration with the University of Lanzhou. A test using a neutron source has been carried out in China. The results are reported in Chapter 8.
3

Performances du détecteur MUNU et Perspectives en vue de la détection des Neutrinos Solaires

Lamblin, Jacob 21 June 2002 (has links) (PDF)
Le détecteur MUNU, destiné à l'étude de la diffusion neutrino sur électron à l'aide des antineutrinos émis par un réacteur nucléaire, est constitué d'une chambre à projection temporelle (TPC) contenant du gaz CF4. L'objectif de la thèse était de déterminer si un détecteur basé sur le même principe pouvait être envisagé pour mesurer le spectre en énergie des neutrinos solaires de basse énergie. Pour cette étude, trois aspects étaient essentiels : la résolution en énergie, la résolution angulaire et le bruit de fond du détecteur. Les deux premiers car l'énergie du neutrino est reconstituée à partir de l'énergie et de la direction initiale de l'électron de recul. Le troisième car le faible nombre d'interactions attendu impose un niveau de bruit de fond très bas. Dans un premier temps, une revue détaillée de la physique des neutrinos solaires du point de vue théorique mais aussi expérimental est réalisée puis les caractéristiques du détecteur MUNU et son principe de fonctionnement sont exposés. Ensuite, les performances du détecteur sont abordées successivement : les méthodes d'étalonnage en énergie développées et la résolution en énergie qui en découle ; la détermination de la direction initiale des électrons et la résolution angulaire associée ; et enfin les différentes sources de bruit de fond rencontrées ainsi que les taux d'événements induits. Finalement, les résultats de la simulation de la détection des neutrinos solaires sont présentés. Ils mettent en évidence les améliorations nécessaires et les points exigeant des études supplémentaires.

Page generated in 0.1009 seconds