• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Discrete dynamical systems in solving H-equations

Chen, Jun 11 May 2006 (has links)
Three discrete dynamical models are used to solve the Chandrasekhar H-equation with a positive or negative characteristic function. Two of them produce series of continuous functions which converge to the solution of the H-equation. An iteration model of the nth approximation for the H-equation is discussed. This is a nonlinear n-dimensional dynamical system. We study not only the solutions of the nth approximation for the H-equation but also the mathematical structure and behavior of the orbits with respect to the parameter function, i.e. characteristic function. The dynamical system is controlled by a manifold. For n=2, stability of the fixed points is studied. The stable and unstable manifolds passing through the hyperbolically fixed point are obtained. Globally, the bounded orbits region is given. For parameter c in some region a periodic orbit of one dimension will cause periodic orbits in the higher dimensional system. For changing parameter c, the bifurcation points are discussed. For c ∈ (-5.6049, 1] the system has a series of double bifurcation points. For c ∈ (-8, -5.6049] chaos appears. For c in a window contained the chaos region, a new bifurcation phenomenon is found. For c ≤ -7 any periodic orbits appear. For c in the chaos region the behavior of attractor is discussed. Chaos occurs in the n-dimensional dynamical system. / Ph. D.
2

Plausibility and the theoreticians' regress : constructing the evolutionary fate of stars /

Ipe, Alex I. January 1900 (has links)
Thesis (Ph. D.)--Carleton University, 2001. / Includes bibliographical references (p. 150-161). Also available in electronic format on the Internet.
3

Methods of Computing Functional Gains for LQR Control of Partial Differential Equations

Hulsing, Kevin P. 09 January 2000 (has links)
This work focuses on a comparison of numerical methods for linear quadratic regulator (LQR) problems defined by parabolic partial differential equations. In particular, we study various methods for computing functional gains to boundary control problems for the heat equation. These methods require us to solve various equations including the algebraic Riccati equation, the Riccati partial differential equation and the Chandrasekhar partial differential equations. Numerical results are presented for control of a one-dimensional and a two-dimensional heat equation with Dirichlet or Robin boundary control. / Ph. D.
4

Establishing Super- and Sub-Chandrasekar Limiting Mass White Dwarfs to Explain Peculiar Type La Supernovae

Das, Upasana January 2015 (has links) (PDF)
A white dwarf is most likely the end stage of a low mass star like our Sun, which results when the parent star consumes all the hydrogen in its core, thus bringing fusion to a halt. It is a dense and compact object, where the inward gravitational pull is balanced by the outward pressure arising due to the motion of its constituent degenerate electrons. The theory of non-magnetized and non-rotating white dwarfs was formulated extensively by S. Chandrasekhar in the 1930s, who also proposed a maximum possible mass for this objects, known as the Chandrasekhar limit (Chandrasekhar 1935)1. White dwarfs are believed to be the progenitors of extremely bright explosions called type Ia supernovae (SNeIa). SNeIa are extremely important and popular astronomical events, which are hypothesized to be triggered in white dwarfs having mass close to the famous Chandrasekhar limit ∼ 1.44M⊙. The characteristic nature of the variation of luminosity with time of SNeIa is believed to be powered by the decay of 56Ni to 56Co and, finally, to 56Fe. This feature, along with the consistent mass of the exploding white dwarf, is deeply linked with their utilization as “standard candles” for cosmic distance measurement. In fact, SNeIa measurements were instrumental in establishing the accelerated nature of the current expansion of the universe (Perlmutter et al. 1999). However, several recently observed peculiar SNeIa do not conform to this traditional explanation. Some of these SNeIa are highly over-luminous, e.g. SN 2003fg, SN 2006gz, SN 2007if, SN 2009dc (Howell et al. 2006; Scalzo et al. 2010), and some others are highly under-luminous, e.g. SN 1991bg, SN 1997cn, SN 1998de, SN 1999by, SN 2005bl (Filippenko et al. 1992; Taubenberger et al. 2008). The luminosity of the former group of SNeIa implies a huge Ni-mass (often itself super-Chandrasekhar), invoking highly super-Chandrasekhar white dwarfs, having mass 2.1 − 2.8M⊙, as their most plausible progenitors (Howell et al. 2006; Scalzo et al. 2010). On the other hand, the latter group produces as low as ∼ 0.1M⊙ of Ni (Stritzinger et al. 2006), which rather seem to favor sub-Chandrasekhar explosion scenarios. In this thesis, as the title suggests, we have endeavored to establish the existence of exotic, super- and sub-Chandrasekhar limiting mass white dwarfs, in order to explain the aforementioned peculiar SNeIa. This is an extremely important puzzle to solve in order to comprehensively understand the phenomena of SNeIa, which in turn is essential for the correct interpretation of the evolutionary history of the universe. Effects of magnetic field: White dwarfs have been observed to be magnetized, having surface fields as high as 105 − 109 G (Vanlandingham et al. 2005). The interior field of a white dwarf cannot be probed directly but it is quite likely that it is several orders of magnitude higher than the surface field. The theory of weakly magnetized white dwarfs has been investigated by a few authors, however, their properties do not starkly contrast with that of the non-magnetized cases (Ostriker & Hartwick 1968). In our venture to find a fundamental basis behind the formation of super-Chandrasekhar white dwarfs, we have explored in this thesis the impact of stronger magnetic fields on the properties of white dwarfs, which has so far been overlooked. We have progressed from a simplistic to a more rigorous, self-consistent model, by adding complexities step by step, as follows: • spherically symmetric Newtonian model with constant (central) magnetic field • spherically symmetric general relativistic model with varying magnetic field • model with self-consistent departure from spherical symmetry by general relativis-tic magnetohydrodynamic (GRMHD) numerical modeling. We have started by exploiting the quantum mechanical effect of Landau quanti-zation due to a maximum allowed equipartition central field greater than a critical value Bc = 4.414 × 1013 G. To begin with, we have carried out the calculations in a Newtonian framework assuming spherically symmetric white dwarfs. The primary ef-fect of Landau quantization is to stiffen the equation of state (EoS) of the underlying electron degenerate matter in the high density regime, and, hence, yield significantly super-Chandrasekhar white dwarfs having mass much & 2M⊙ (Das & Mukhopadhyay 2012a,b). Consequently, we have proposed a new mass limit for magnetized white dwarfs which may establish the aforementioned peculiar, over-luminous SNeIa as new standard candles (Das & Mukhopadhyay 2013a,b). We have furthermore predicted possible evo-lutionary scenarios by which super-Chandrasekhar white dwarfs could form by accretion on to a commonly observed magnetized white dwarf, by invoking the phenomenon of flux freezing, subsequently ending in over-luminous, super-Chandrasekhar SNeIa (Das et al. 2013). Before moving on to a more complex model, we have justified the assumptions in our simplistic model, in the light of various related physics issues (Das & Mukhopad-hyay 2014b), and have also clarified, and, hence, removed some serious misconceptions regarding our work (Das & Mukhopadhyay 2015c). Next, we have considered a more self-consistent general relativistic framework. We have obtained stable solutions of magnetostatic equilibrium models for white dwarfs pertaining to various magnetic field profiles, however, still in spherical symmetry. We have showed that in this framework, a maximum stable mass as high as ∼ 3.3M⊙ can be realized (Das & Mukhopadhyay 2014a). However, it is likely that the anisotropic effect due to a strong magnetic field may cause a deformation in the spherical structure of the white dwarfs. Hence, in order to most self-consistently take into account this departure from spherical symmetry, we have constructed equilibrium models of strongly magnetized, static, white dwarfs in a general relativistic framework, first time in the literature to the best of our knowledge. In order to achieve this, we have modified the GRMHD code XNS (Pili et al. 2014), to apply it in the context of white dwarfs. Interestingly, we have found that signifi-cantly super-Chandrasekhar white dwarfs, in the range ∼ 1.7 − 3.4M⊙, are obtained for many possible field configurations, namely, poloidal, toroidal and mixed (Das & Mukhopadhyay 2015a). Furthermore, due to the inclusion of deformation caused by a strong magnetic field, super-Chandrasekhar white dwarfs are obtained for relatively lower central magnetic field strengths (∼ 1014 G) compared to that in the simplistic model — as correctly speculated in our first work of this series (Das & Mukhopadhyay 2012a). We have also found that although the characteristic deformation induced by a purely toroidal field is prolate, the overall shape remains quasi-spherical — justifying our earlier spherically symmetric assumption while constructing at least some models of strongly magnetized white dwarfs (Das & Mukhopadhyay 2014a). Indeed more accurate and extensive numerical analysis seems to have validated our analytical findings. Thus, very interestingly, our investigation has established that magnetized white dwarfs can indeed have mass that significantly exceeds the Chandrasekhar limit, irre-spective of the origin of the underlying magnetic effect — a discovery which is not only of theoretical importance, but also has a direct astrophysical implication in explaining the progenitors of the peculiar, over-luminous, super-Chandrasekhar SNeIa. Effects of modified Einstein’s gravity: A large array of models has been required to explain the peculiar, over- and under- luminous SNeIa. However, it is unlikely that nature would seek mutually antagonistic scenarios to exhibit sub-classes of apparently the same phenomena, i.e., triggering of thermonuclear explosions in white dwarfs. Hence, driven by the aim to establish a unification theory of SNeIa, we have invoked in the last part of this thesis a modification to Einstein’s theory of general relativity in white dwarfs. The validity of general relativity has been tested mainly in the weak field regime, for example, through laboratory experiments and solar system tests. However, the question remains, whether general relativity requires modification in the strong gravity regime, such as, the expanding universe, the region close to a black hole and neutron star. For instance, there is evidence from observational cosmology that the universe has undergone two epochs of cosmic acceleration, the theory behind which is not yet well understood. The period of acceleration in the early universe is known as inflation, while the current accelerated expansion is often explained by invoking a mysterious dark energy. An alternative approach to explain the mysteries of inflation and dark energy is to modify the underlying gravitational theory itself, as it conveniently avoids involving any exotic form of matter. Several modified gravity theories have been proposed which are extensions of Einstein’s theory of general relativity. A popular class of such theories is known as f (R) gravity (e.g. see de Felice & Tsujikawa 2010), where the Lagrangian density f of the gravitational field is an arbitrary function of the Ricci scalar R. In the context of astrophysical compact objects, so far, modified gravity theories have been applied only to neutron stars, which are much more compact than white dwarfs, in order to test the validity of such theories in the strong field regime (e.g. Cooney et al. 2010; Arapoˇglu et al. 2011). Moreover, a general relativistic correction itself does not seem to modify the properties of a white dwarf appreciably when compared to Newtonian calculations. Our venture of exploring modified gravity in white dwarfs in this thesis, is a first in the literature to the best of our knowledge. We have exploited the advantage that white dwarfs have over neutron stars, i.e., their EoS is well established. Hence, any change in the properties of white dwarfs can be solely attributed to the modification of the underlying gravity, unlike in neutron stars, where similar effects could be produced by invoking a different EoS. We have explored a popular, yet simple, model of f (R) gravity, known as the Starobinsky model (Starobinsky 1980) or R−squared model, which was originally pro-posed to explain inflation. Based on this model, we have first shown that modified gravity reproduces those results which are already explained in the paradigm of general relativity (and Newtonian framework), namely, low density white dwarfs in this context. This is a very important test of the modified gravity model and is furthermore necessary to constrain the underlying model parameter. Next, depending on the magnitude and sign of a single model parameter, we have not only obtained both highly super-Chandrasekhar and highly sub-Chandrasekhar limiting mass white dwarfs, but we have also established them as progenitors of the peculiar, over- and under-luminous SNeIa, respectively (Das & Mukhopadhyay 2015b). Thus, an effectively single underlying the-ory unifies the two apparently disjoint sub-classes of SNeIa, which have so far hugely puzzled astronomers. To summarize, in the first part of the thesis, we have established the enormous significance of magnetic fields in white dwarfs in revealing the existence of significantly super-Chandrasekhar white dwarfs. These super-Chandrasekhar white dwarfs could be ideal progenitors of the peculiar, over-luminous SNeIa, which can, hence, be used as new standard candles of cosmic distance measurements. In the latter part of the thesis, we have established the importance of a modified theory of Einstein’s gravity in revealing both highly super- and highly sub-Chandrasekhar limiting mass white dwarfs. We have furthermore demonstrated how such a theory can serve as a missing link between the peculiar, super- and sub-Chandrasekhar SNeIa. Thus, the significance of the current thesis lies in the fact that it not only questions the uniqueness of the Chandrasekhar mass-limit for white dwarfs, but it also argues for the need of a modified theory of Einstein’s gravity to explain astrophysical observations.
5

Lightcurves of super-Chandrasekhar mass supernovae

Byström, Amanda January 2020 (has links)
20 supernovae that spectroscopically match the peculiar, superluminous type Ia supernova 2003fg are studied in this project. SN2003fg is thought to have erupted at a super-Chandrasekhar mass, thus breaching the theoretical mass limit for a white dwarf. By analysing the lightcurves of these 20 supernovae, this work aims to understand what the progenitor binary systems from which the supernovae erupt looked like. A lightcurve fitting using the software snpy is performed for each supernova. Using the produced models, time of maximum luminosity, stretch and maximum magnitudes in the g-, r- and i-bands are found. It is found that subluminous supernovae might be a sign of circumstellar material surrounding the progenitor star, though some of the supernovae were superluminous and some adhered to Phillip's relationship. Substructures were found in the lightcurves, as the sampled supernovae showed clearly different behaviours in each of the three bands.
6

Calcul précis de l'équation d'état des gaz leptoniques : quelques implications pour la formation et la destruction des étoiles à neutrons

Chatri, Hayat 03 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l’Université de Montréal / Les étoiles massives (M≥8M.) deviennent des supernovae de type II à la fin de leur vie. Ce phénomène explosif est caractérisé par l'effondrement du cœur de Fer (56Fe) qui, sous l'influence de sa propre gravité se détache des couches externes qui l'enveloppent. La théorie prédit que le cœur de l'étoile survit à cette explosion sous la forme d'une étoile à neutrons. Cette dernière pourrait subir une collision avec une autre étoiles à neutrons. Comme résultat d'une telle collision, il y aura une expulsion de la matière neutronique. Pour décrire ces deux processus d'effondrement et de décompression, on doit posséder une bonne équation d'état. Or, dans la plupart des études sur la matière nucléaire dans les étoiles massives en implosion, les intégrales se trouvant dans les quantités fondamentales telles que la pression, l'énérgie et l'entropie des électrons ont été représentés par des expressions approchées de Chandrasekhar. Cependant, ces approximations ne sont plus valables à certaines conditions (basse densité et haute température), et il nous est impossible de savoir ce qui se passe dans le milieu stellaire dans de telles conditions; et même dans le cas où ces approximations sont valables, plusieurs questions se posent toujours sur le degré d'erreur dû à ces approximations qui peuvent être, parfois, trompeuses. Dans notre étude on a pris en considération l'effet de création de paires qu'aura lieu dans le milieu stellaire à des basses densités et hautes températures; l'inclusion de ce détail constitue un élément nouveau de cette étude. Le but de ce mémoire consiste à mener un calcul exact pour toutes les quantités physiques de l'équation d'état en évaluant numériquement ces intégrales, et aussi à voir quelles contributions elles peuvent apporter lors de leurs insertion dans des programmes déjà développés au Département de Physique de l'Université de Montréal, mais qui utilisent seulement des approximations. La bonne précision de nos calculs d'intégrales et les différentes méthodes utilisées pour vérifier leurs valeurs numériques nous a permis de faire des corrections importantes à toutes les quantités physiques de l'équation et, surtout, à l'entropie et l'énergie libre de Helmholtz. Ce calcul nous a permis aussi de déterminer les domaines de validité des expressions approchés de Chandrasekhar, souvent utilisées par les astrophysiciens, et celles de la limite "bulle chaude".

Page generated in 0.0375 seconds