1 |
MÃtodos estatÃsticos multi-percursos para a identificaÃÃo cega de canais da fonte de aplicaÃÃes Ãs comunicaÃÃes sem fio / High-order statistical methods for blind channel identification and source detection with applications to wireless communicationsCarlos EstevÃo Rolim Fernandes 30 May 2008 (has links)
Laboratoire I3S/CNRS / Os sistemas de telecomunicaÃÃes atuais oferecem servios que demandam taxas de transmissÃo muito elevadas. O problema da identificaÃÃo de canal aparece nesse contexto com um problema da maior importÃncia. O uso de tÃcnicas cegas tem sido de grande interesse na busca por um melhor compromisso entre uma taxas binÃria adequada e a qualidade da informaÃÃo recuperada. Apoiando-se em propriedades especiais dos cumulantes de 4a ordem dos sinais à saÃda do canal, esta tese introduz novas ferramentas de processamento
de sinais com aplicaÃÃes em sistemas de comunicaÃÃo rÃdio-mÃveis. Explorando a estrutura simÃtrica dos cumulantes de saÃda, o problema da identificaÃÃo cega de canais à abordado a partir de um modelo multilinear do tensor de cumulantes 4a ordem, baseado em uma decomposiÃÃo em fatores paralelos (Parafac). No caso SISO, os componentes do novo modelo tensorial apresentam uma estrutura Hankel. No caso de canais MIMO sem memÃria, a redundÃncia dos fatores tensoriais à explorada na estimaÃÃo dos coeficientes dos canal. Neste contexto, novos algoritmos de identificaÃÃo cega de canais sÃo desenvolvidos nesta tese com base em um problema de otimizaÃÃo de mÃnimos quadrados de passo Ãnico (SS-LS). Os
mÃtodos propostos exploram plenamente a estrutura multilinear do tensor de cumulantes bem como suas simetrias e redundÃncias, evitando assim qualquer forma de prÃ-processamento. Com efeito, a abordagem SS-LS induz uma soluÃÃo baseada em um Ãnico procedimento de minimizaÃÃo, sem etapas intermediÃrias, contrariamente ao que ocorre na maior parte dos mÃtodos existentes na literatura. Utilizando apenas os cumulantes de ordem 4 e explorando o conceito
de Arranjo Virtual, trata-se tambÃm o problema da localizaÃÃo de fontes, num contexto multiusuÃrio. Uma contribuÃÃo original consiste em aumentar o nÃmero de sensores virtuais
com base em uma decomposiÃÃo particular do tensor de cumulantes, melhorando assim a resoluÃÃo do arranjo, cuja estrutura à tipicamente obtida quando se usa estatÃsticas de ordem 6. Considera-se ainda a estimaÃÃo dos parÃmetros fÃsicos de um canal de comunicaÃÃo MIMO com muti-percursos. AtravÃs de uma abordagem completamente cega, o canal multi-percurso à primeiramente tratado como um modelo convolutivo e uma nova tÃcnica à proposta para estimar seus coeficientes. Esta tÃcnica nÃo-paramÃtrica generaliza os mÃtodos previamente propostos para os casos SISO e MIMO (sem memÃria). Fazendo uso de um formalismo tensorial para representar o canal de multi-percursos MIMO, seus parÃmetros fÃsicos podem ser obtidos atravÃs de uma tÃcnica combinada de tipo ALS-MUSIC, baseada em um algoritmo de subespaÃo. Por fim, serà considerado o problema da determinaÃÃo de ordem de canais FIR, particularmente no
caso de sistemas MISO. Um procedimento completo à introduzido para a detecÃÃo e estimaÃÃo de canais de comunicaÃÃo MISO seletivos em freqÃÃncia. O novo algoritmo, baseado em uma abordagem de deflaÃÃo, detecta sucessivamente cada fonte de sinal, determina a ordem de seu
canal de transmissÃo individual e estima os coeficientes associados. / Les systÃmes de tÃlÃcommunications modernes exigent des dÃbits de transmission trÃs ÃlevÃs. Dans ce cadre, le problÃme dâidentification de canaux est un enjeu majeur.
Lâutilisation de techniques aveugles est dâun grand intÃrÃt pour avoir le meilleur compromis entre un taux binaire adÃquat et la qualità de lâinformation rÃcupÃrÃe. En utilisant les propriÃtÃs des cumulants dâordre 4 des signaux de sortie du canal, cette thÃse introduit de
nouvelles mÃthodes de traitement du signal tensoriel avec des applications pour les systÃmes de communication radio-mobiles. En utilisant la structure symÃtrique des cumulants de sortie, nous traitons le problÃme de lâidentification aveugle de canaux en introduisant un mod`ele multilinÃaire pour le tenseur des cumulants dâordre 4, basà sur une dÃcomposition de type Parafac. Dans le cas SISO, les composantes du modÃle tensoriel ont une structure de Hankel. Dans le cas de canaux MIMO instantanÃs, la redondance des facteurs tensoriels est exploitÃe pour lâestimation des coefficients du canal.
Dans ce contexte, nous dÃveloppons des algorithmes dâidentification aveugle basÃs sur une minimisation de type moindres carrÃs à pas unique (SS-LS). Les mÃthodes proposÃes exploitent la structure multilinÃaire du tenseur de cumulants aussi bien que les relations de symÃtrie et de
redondance, ce qui permet dâÃviter toute sorte de traitement au prÃalable. En effet, lâapproche
SS-LS induit une solution basÃe sur une seule et unique procÃdure dâoptimisation, sans les Ãtapes intermÃdiaires requises par la majorità des mÃthodes existant dans la littÃrature. En exploitant seulement les cumulants dâordre 4 et le concept de rÃseau virtuel, nous abordons aussi
le problÃme de la localisation de sources dans le cadre dâun rÃseau dâantennes multiutilisateur. Une contribution originale consiste à augmenter le nombre de capteurs virtuels en exploitant un arrangement particulier du tenseur de cumulants, de maniÃre à amÃliorer la rÃsolution du rÃseau, dont la structure Ãquivaut à celle qui est typiquement issue de lâutilisation des statistiques
dâordre 6. Nous traitons par ailleurs le problÃme de lâestimation des paramÃtres physiques dâun canal de communication de type MIMO à trajets multiples. Dans un premier temps, nous considÂerons le canal à trajets multiples comme un modÃle MIMO convolutif et proposons une
nouvelle technique dâestimation des coefficients. Cette technique non-paramÃtrique gÃnÃralise les mÃthodes proposÃes dans les chapitres prÃcÃdents pour les cas SISO et MIMO instantanÃ. En reprÃsentant le canal multi-trajet à lâaide dâun formalisme tensoriel, les paramÃtres physiques sont obtenus en utilisant une technique combinÃe de type ALS-MUSIC, basÃe sur un algorithme de sous-espaces. Enfin, nous considÃrons le problÃme de la dÂetermination dâordre de canaux de type RIF, dans le contexte des systÃmes MISO. Nous introduisons une procÃdure complÃte qui combine la dÃtection des signaux avec lâestimation des canaux de communication MISO sÃlectifs en frÃquence. Ce nouvel algorithme, basà sur une technique de dÃflation, est capable de dÃtecter
successivement les sources, de dÃterminer lâordre de chaque canal de transmission et dâestimer les coefficients associÂes.
|
Page generated in 0.1464 seconds