• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Channel Capacity in the Presence of Feedback and Side Information

SEN, NEVROZ 12 July 2013 (has links)
This thesis deals with the Shannon-theoretic fundamental limits of channel coding for single-user channels with memory and feedback and for multi-user channels with side information. We first consider the feedback capacity of a class of symmetric channels with memory modelled as nite-state Markov channels. The symmetry yields the existence of a hidden Markov noise process that facilitates the channel description as a function of input and noise, where the function satisfies a desirable invertibility property. We show that feedback does not increase capacity for such class of finite-state channels and that both their non-feedback and feedback capacities are achieved by an independent and uniformly distributed input. As a result, the capacity is given as a difference of output and noise entropy rates, where the output is also a hidden Markov process; hence, capacity can be approximated via well known algorithms. We then consider the memoryless state-dependent multiple-access channel (MAC) where the encoders and the decoder are provided with various degrees of asymmetric noisy channel state information (CSI). For the case where the encoders observe causal, asymmetric noisy CSI and the decoder observes complete CSI, inner and outer bounds to the capacity region, which are tight for the sum-rate capacity, are provided. Next, single-letter characterizations for the channel capacity regions under each of the following settings are established: (a) the CSI at the encoders are non-causal and asymmetric deterministic functions of the CSI at the decoder (b) the encoders observe asymmetric noisy CSI with asymmetric delays and the decoder observes complete CSI; (c) a degraded message set scenario with asymmetric noisy CSI at the encoders and complete and/or noisy CSI at the decoder. Finally, we consider the above state-dependent MAC model and identify what is required to be provided to the receiver in order to get a tight converse for the sum-rate capacity. Inspired by the coding schemes of the lossless CEO problem as well as of a recently proposed achievable region, we provide an inner bound which demonstrates the rate required to transmit this information to the receiver. / Thesis (Ph.D, Mathematics & Statistics) -- Queen's University, 2013-07-12 13:48:59.849
2

Linear Programming Decoding for Non-Uniform Sources and for Binary Channels With Memory

Cohen, ADAM 09 December 2008 (has links)
Linear programming (LP) decoding of low-density parity-check codes was introduced by Feldman et al. in [1]. In his formulation it is assumed that communication takes place over a memoryless channel and that the source is uniform. Here, we extend the LP decoding paradigm by studying its application to scenarios with source non-uniformity and to decoding over channels with memory. We develop two decoders for the scenario of non-uniform memoryless sources transmitted over memoryless channels. The first decoder uses a modified linear cost function which incorporates the a-priori source information and works with systematic codes. The second decoder differs by using non-systematic codes obtained by puncturing lower rate systematic codes and using an “extended decoding polytope.” Simulations show that the modified decoders yield gains over the standard LP decoder. Next, LP decoding is considered for two channels with memory: the binary additive Markov noise channel and the infinite-memory non-ergodic Polya-contagion channel. For the Markov channel, no linear cost function corresponding to maximum likelihood (ML) decoding could be obtained and hence it is unclear how to proceed. For the Polya channel, two LP-based decoders are developed. The first is derived in a straightforward manner from the ML decoding rule of [2]. The second decoder relies on a simplification of the same ML decoding rule which holds for codes containing the all-ones codeword. Simulations are performed for both decoders with regular and irregular LDPC codes and demonstrate relatively good performance with respect to the channel epsilon-capacity. / Thesis (Master, Mathematics & Statistics) -- Queen's University, 2008-12-08 16:24:43.358
3

Coding Theorem and Memory Conditions for Abstract Channels with Time Structure / Kodierungstheorem und Gedächtniseigenschaften für abstrakte Kanäle mit Zeitstruktur

Mittelbach, Martin 02 June 2015 (has links) (PDF)
In the first part of this thesis, we generalize a coding theorem and a converse of Kadota and Wyner (1972) to abstract channels with time structure. As a main contribution we prove the coding theorem for a significantly weaker condition on the channel output memory, called total ergodicity for block-i.i.d. inputs. We achieve this result mainly by introducing an alternative characterization of information rate capacity. We show that the ψ-mixing condition (asymptotic output-memorylessness), used by Kadota and Wyner, is quite restrictive, in particular for the important class of Gaussian channels. In fact, we prove that for Gaussian channels the ψ-mixing condition is equivalent to finite output memory. Moreover, we derive a weak converse for all stationary channels with time structure. Intersymbol interference as well as input constraints are taken into account in a flexible way. Due to the direct use of outer measures and a derivation of an adequate version of Feinstein’s lemma we are able to avoid the standard extension of the channel input σ-algebra and obtain a more transparent derivation. We aim at a presentation from an operational perspective and consider an abstract framework, which enables us to treat discrete- and continuous-time channels in a unified way. In the second part, we systematically analyze infinite output memory conditions for abstract channels with time structure. We exploit the connections to the rich field of strongly mixing random processes to derive a hierarchy for the nonequivalent infinite channel output memory conditions in terms of a sequence of implications. The ergodic-theoretic memory condition used in the proof of the coding theorem and the ψ-mixing condition employed by Kadota and Wyner (1972) are shown to be part of this taxonomy. In addition, we specify conditions for the channel under which memory properties of a random process are invariant when the process is passed through the channel. In the last part, we investigate cascade and integration channels with regard to mixing conditions as well as properties required in the context of the coding theorem. The results are useful to study many physically relevant channel models and allow a component-based analysis of the overall channel. We consider a number of examples including composed models and deterministic as well as random filter channels. Finally, an application of strong mixing conditions from statistical signal processing involving the Fourier transform of stationary random sequences is discussed and a list of further applications is given. / Im ersten Teil der Arbeit wird ein Kodierungstheorem und ein dazugehöriges Umkehrtheorem von Kadota und Wyner (1972) für abstrakte Kanäle mit Zeitstruktur verallgemeinert. Als wesentlichster Beitrag wird das Kodierungstheorem für eine signifikant schwächere Bedingung an das Kanalausgangsgedächtnis bewiesen, die sogenannte totale Ergodizität für block-i.i.d. Eingaben. Dieses Ergebnis wird hauptsächlich durch eine alternative Charakterisierung der Informationsratenkapazität erreicht. Es wird gezeigt, dass die von Kadota und Wyner verwendete ψ-Mischungsbedingung (asymptotische Gedächtnislosigkeit am Kanalausgang) recht einschränkend ist, insbesondere für die wichtige Klasse der Gaußkanäle. In der Tat, für Gaußkanäle wird bewiesen, dass die ψ-Mischungsbedingung äquivalent zu endlichem Gedächtnis am Kanalausgang ist. Darüber hinaus wird eine schwache Umkehrung für alle stationären Kanäle mit Zeitstruktur bewiesen. Sowohl Intersymbolinterferenz als auch Eingabebeschränkungen werden in allgemeiner und flexibler Form berücksichtigt. Aufgrund der direkten Verwendung von äußeren Maßen und der Herleitung einer angepassten Version von Feinsteins Lemma ist es möglich, auf die Standarderweiterung der σ-Algebra am Kanaleingang zu verzichten, wodurch die Darstellungen transparenter und einfacher werden. Angestrebt wird eine operationelle Perspektive. Die Verwendung eines abstrakten Modells erlaubt dabei die einheitliche Betrachtung von zeitdiskreten und zeitstetigen Kanälen. Für abstrakte Kanäle mit Zeitstruktur werden im zweiten Teil der Arbeit Bedingungen für ein unendliches Gedächtnis am Kanalausgang systematisch analysiert. Unter Ausnutzung der Zusammenhänge zu dem umfassenden Gebiet der stark mischenden zufälligen Prozesse wird eine Hierarchie in Form einer Folge von Implikationen zwischen den verschiedenen Gedächtnisvarianten hergeleitet. Die im Beweis des Kodierungstheorems verwendete ergodentheoretische Gedächtniseigenschaft und die ψ-Mischungsbedingung von Kadota und Wyner (1972) sind dabei Bestandteil der hergeleiteten Systematik. Weiterhin werden Bedingungen für den Kanal spezifiziert, unter denen Eigenschaften von zufälligen Prozessen am Kanaleingang bei einer Transformation durch den Kanal erhalten bleiben. Im letzten Teil der Arbeit werden sowohl Integrationskanäle als auch Hintereinanderschaltungen von Kanälen in Bezug auf Mischungsbedingungen sowie weitere für das Kodierungstheorem relevante Kanaleigenschaften analysiert. Die erzielten Ergebnisse sind nützlich bei der Untersuchung vieler physikalisch relevanter Kanalmodelle und erlauben eine komponentenbasierte Betrachtung zusammengesetzter Kanäle. Es wird eine Reihe von Beispielen untersucht, einschließlich deterministischer Kanäle, zufälliger Filter und daraus zusammengesetzter Modelle. Abschließend werden Anwendungen aus weiteren Gebieten, beispielsweise der statistischen Signalverarbeitung, diskutiert. Insbesondere die Fourier-Transformation stationärer zufälliger Prozesse wird im Zusammenhang mit starken Mischungsbedingungen betrachtet.
4

Coding Theorem and Memory Conditions for Abstract Channels with Time Structure

Mittelbach, Martin 04 December 2014 (has links)
In the first part of this thesis, we generalize a coding theorem and a converse of Kadota and Wyner (1972) to abstract channels with time structure. As a main contribution we prove the coding theorem for a significantly weaker condition on the channel output memory, called total ergodicity for block-i.i.d. inputs. We achieve this result mainly by introducing an alternative characterization of information rate capacity. We show that the ψ-mixing condition (asymptotic output-memorylessness), used by Kadota and Wyner, is quite restrictive, in particular for the important class of Gaussian channels. In fact, we prove that for Gaussian channels the ψ-mixing condition is equivalent to finite output memory. Moreover, we derive a weak converse for all stationary channels with time structure. Intersymbol interference as well as input constraints are taken into account in a flexible way. Due to the direct use of outer measures and a derivation of an adequate version of Feinstein’s lemma we are able to avoid the standard extension of the channel input σ-algebra and obtain a more transparent derivation. We aim at a presentation from an operational perspective and consider an abstract framework, which enables us to treat discrete- and continuous-time channels in a unified way. In the second part, we systematically analyze infinite output memory conditions for abstract channels with time structure. We exploit the connections to the rich field of strongly mixing random processes to derive a hierarchy for the nonequivalent infinite channel output memory conditions in terms of a sequence of implications. The ergodic-theoretic memory condition used in the proof of the coding theorem and the ψ-mixing condition employed by Kadota and Wyner (1972) are shown to be part of this taxonomy. In addition, we specify conditions for the channel under which memory properties of a random process are invariant when the process is passed through the channel. In the last part, we investigate cascade and integration channels with regard to mixing conditions as well as properties required in the context of the coding theorem. The results are useful to study many physically relevant channel models and allow a component-based analysis of the overall channel. We consider a number of examples including composed models and deterministic as well as random filter channels. Finally, an application of strong mixing conditions from statistical signal processing involving the Fourier transform of stationary random sequences is discussed and a list of further applications is given. / Im ersten Teil der Arbeit wird ein Kodierungstheorem und ein dazugehöriges Umkehrtheorem von Kadota und Wyner (1972) für abstrakte Kanäle mit Zeitstruktur verallgemeinert. Als wesentlichster Beitrag wird das Kodierungstheorem für eine signifikant schwächere Bedingung an das Kanalausgangsgedächtnis bewiesen, die sogenannte totale Ergodizität für block-i.i.d. Eingaben. Dieses Ergebnis wird hauptsächlich durch eine alternative Charakterisierung der Informationsratenkapazität erreicht. Es wird gezeigt, dass die von Kadota und Wyner verwendete ψ-Mischungsbedingung (asymptotische Gedächtnislosigkeit am Kanalausgang) recht einschränkend ist, insbesondere für die wichtige Klasse der Gaußkanäle. In der Tat, für Gaußkanäle wird bewiesen, dass die ψ-Mischungsbedingung äquivalent zu endlichem Gedächtnis am Kanalausgang ist. Darüber hinaus wird eine schwache Umkehrung für alle stationären Kanäle mit Zeitstruktur bewiesen. Sowohl Intersymbolinterferenz als auch Eingabebeschränkungen werden in allgemeiner und flexibler Form berücksichtigt. Aufgrund der direkten Verwendung von äußeren Maßen und der Herleitung einer angepassten Version von Feinsteins Lemma ist es möglich, auf die Standarderweiterung der σ-Algebra am Kanaleingang zu verzichten, wodurch die Darstellungen transparenter und einfacher werden. Angestrebt wird eine operationelle Perspektive. Die Verwendung eines abstrakten Modells erlaubt dabei die einheitliche Betrachtung von zeitdiskreten und zeitstetigen Kanälen. Für abstrakte Kanäle mit Zeitstruktur werden im zweiten Teil der Arbeit Bedingungen für ein unendliches Gedächtnis am Kanalausgang systematisch analysiert. Unter Ausnutzung der Zusammenhänge zu dem umfassenden Gebiet der stark mischenden zufälligen Prozesse wird eine Hierarchie in Form einer Folge von Implikationen zwischen den verschiedenen Gedächtnisvarianten hergeleitet. Die im Beweis des Kodierungstheorems verwendete ergodentheoretische Gedächtniseigenschaft und die ψ-Mischungsbedingung von Kadota und Wyner (1972) sind dabei Bestandteil der hergeleiteten Systematik. Weiterhin werden Bedingungen für den Kanal spezifiziert, unter denen Eigenschaften von zufälligen Prozessen am Kanaleingang bei einer Transformation durch den Kanal erhalten bleiben. Im letzten Teil der Arbeit werden sowohl Integrationskanäle als auch Hintereinanderschaltungen von Kanälen in Bezug auf Mischungsbedingungen sowie weitere für das Kodierungstheorem relevante Kanaleigenschaften analysiert. Die erzielten Ergebnisse sind nützlich bei der Untersuchung vieler physikalisch relevanter Kanalmodelle und erlauben eine komponentenbasierte Betrachtung zusammengesetzter Kanäle. Es wird eine Reihe von Beispielen untersucht, einschließlich deterministischer Kanäle, zufälliger Filter und daraus zusammengesetzter Modelle. Abschließend werden Anwendungen aus weiteren Gebieten, beispielsweise der statistischen Signalverarbeitung, diskutiert. Insbesondere die Fourier-Transformation stationärer zufälliger Prozesse wird im Zusammenhang mit starken Mischungsbedingungen betrachtet.

Page generated in 0.2031 seconds