Spelling suggestions: "subject:"chaos polynomial crear"" "subject:"chaos polynomial cream""
1 |
Chaos polynomial creux et adaptatif pour la propagation d'incertitudes et l'analyse de sensibilitéBlatman, Géraud 09 October 2009 (has links) (PDF)
Cette thèse s'insère dans le contexte général de la propagation d'incertitudes et de l'analyse de sensibilité de modèles de simulation numérique, en vue d'applications industrielles. Son objectif est d'effectuer de telles études en minimisant le nombre d'évaluations du modèle, potentiellement coûteuses. Le présent travail repose sur une approximation de la réponse du modèle sur la base du chaos polynomial(CP), qui permet de réaliser des post-traitements à un coût de calcul négligeable. Toutefois, l'ajustement du CP peut nécessiter un nombre conséquent d'appels au modèle si ce dernier dépend d'un nombre élevé de paramètres (e.g. supérieur à 10). Pour contourner ce problème, on propose deux algorithmes pour ne sélectionner qu'un faible nombre de termes importants dans la représentation par CP, à savoir une procédure de régression pas-à-pas et une procédure basée sur la méthode de Least Angle Regression (LAR). Le faible nombre de coefficients associés aux CP creux obtenus peuvent ainsi être déterminés à partir d'un nombre réduit d'évaluations du modèle. Les méthodes sont validées sur des cas-tests académiques de mécanique, puis appliquées sur le cas industriel de l'analyse d'intégrité d'une cuve de réacteur à eau pressurisée. Les résultats obtenus confirment l'efficacité des méthodes proposées pour traiter les problèmes de propagation d'incertitudes et d'analyse de sensibilité en grande dimension.
|
Page generated in 0.076 seconds