1 |
On the E-polynomials of a family of character varietiesMereb, Martı́n, 1981- 02 March 2015 (has links)
We compute the E-polynomials of a family of twisted character varieties M [superscript g] (Sl [subscript n]) by proving they have polynomial count, and applying a result of N. Katz on the counting functions. To compute the number of F [subscript q]-points of these varieties as a function of q, we used a formula of Frobenius. Our calculations made use of the character tables of Gl [subscript n](q) and Sl subscript n](q), previously computed by J. A. Green and G. Lehrer, and a result of Hanlon on the Möbius function of a subposet of set-partitions. The Euler Characteristics of the M [superscript g] (Sl [subscript n]) are calculated then with these polynomial. / text
|
2 |
On the canonical components of character varieties of hyperbolic 2-bridge link complementsLandes, Emily Rose 25 October 2011 (has links)
This dissertation concerns the study of canonical components of the SL(2, C) character varieties of hyperbolic 3-manifolds. Although character varieties have proven to be a useful tool in studying hyperbolic 3-manifolds, very little is known about their structure. Chapter 1 provides background on this subject. Chapter 2 is dedicated to the canonical component of the Whitehead link. We provide a projective model and show that this model is isomorphic to P^2 blown up at 10 points. The Whitehead link can be realized as 1/1 Dehn surgery on one cusp of both the Borromean rings and the 3-chain link. In Chapter 3 we examine the canonical components for the two families of hyperbolic link complements obtained by 1/n Dehn filling on one component of both the Borromean rings and the 3-chain link. These examples extend the work of Macasieb, Petersen and van Luijk who have studied the character varieties associated to the twist knot complements. We conjecture that the canonical components for the links obtained by 1/n Dehn filling on one component of the 3-chain link are all rational surfaces isomorphic to P^2 blown up at 9n + 1 points. A major goal is to understand how the algebro-geometric structure of these varieties reflects the topological structure of the associated manifolds. At the end of Chapter 3 we discuss common features of these examples and explain how our results lend insight into the affect Dehn surgery has on the character variety. We conclude, in Chapter 4, with a description of possible directions for future research. / text
|
3 |
Canonical quaternion algebra of the Whitehead link complementPalmer, Rebekah, 0000-0002-1240-6759 January 2023 (has links)
Let ΓM be the fundamental group of a knot or link complement M. The discrete faithful representation of ΓM into PSL2(C) has an associated quaternion algebra. We can extend this notation to other representations, which are encoded by the character variety X(ΓM). The generalization is the canonical quaternion algebra and can be used to find unifying features of irreducible representations, such as the splitting behavior of their associated quaternion algebras. Within this dissertation, we will determine properties of the canonical quaternion algebra for the Whitehead link complement and explore how the algebra can descend to quaternion algebras of the Dehn (d, m)-surgeries thereon. / Mathematics
|
4 |
Profinite Completions and Representations of Finitely Generated GroupsRyan F Spitler (7046771) 16 August 2019 (has links)
n previous work, the author and his collaborators developed a relationship in the SL(2,C) representation theories of two finitely generated groups with isomorphicprofinite completions assuming a certain strong representation rigidity for one of thegroups. This was then exploited as one part of producing examples of lattices in SL(2,C) which are profinitely rigid. In this article, the relationship is extended to representations in any connected reductive algebraic groups under a weaker representation rigidity hypothesis. The results are applied to lattices in higher rank Liegroups where we show that for some such groups, including SL(n,Z) forn≥3, they are either profinitely rigid, or they contain a proper Grothendieck subgroup.
|
5 |
Geometry of complex character varieties / Géométrie des variétés de caractères complexesPaluba, Robert 05 July 2017 (has links)
Le but de cette thèse est d'étudier différents exemples des variétés de caractères régulières et sauvages des courbes complexes.La première partie est consacrée à l'étude d'un exemple de variété de caractères de la sphère avec quatre trous et groupe exotique G₂ comme son groupe de structure. On démontre que pour un choix particulier de classes de conjugaison du groupe G₂ , la variété obtenue est de dimension complexe deux et isomorphe à la surface cubique de Fricke—Klein. Cette surface apparaît déjà dans le cas classique comme la variété de caractères de cette surface avec le groupe de structure SL₂ (C). De plus, on interprète les orbites de groupe de tresses de taille 7 dans cette surface comme les droites passant par les triplés de points dans le plan de Fano P² (F₂).Dans la deuxième partie, on établit plusieurs cas de la „conjecture d'écho”, correspondant aux équations différentielles de Painlevé I, II et IV. On montre que sur la sphère de Riemann avec un point singulier, pour des choix particuliers de la singularité il y a trois familles infinies de variétés de caractères sauvages de dimension complexe deux. Dans ces familles, le rang du groupe de structure n'est pas borné et augmente jusqu'à l'infini. Le résultat principal de cette partie démontre que tous les membres de ces trois familles de variétés sont isomorphes aux espaces de phase des équations de Painlevé associées. En calculant les quotients de la théorie géométrique des invariants, on fournit des isomorphismes explicites entre les anneaux de fonctions des variétés affines qui apparaissent et relie les paramètres des surfaces cubiques.Dans la dernière partie, avec des outils de la géométrie quasi-Hamiltonienne, on étudie une famille des espaces généralisant les hiérarchies de Painlevé I et II pour les groupes linéaires de rang supérieur. En particulier, pour toute variété Bk dans la hiérarchie il y a une application moment, prenant ses valeurs dans un groupe, qui s'avère être un polynôme continuant d'Euler. Ces polynômes admettent des factorisations en continuants plus courts et on montre que les factorisations d'un polynôme continuant de longueur k en termes de longueur un sont énumérées par le nombre de Catalan Ck. De plus, chaque factorisation fournit un plongement du produit de fusion de k copies de GLn (C) sur un ouvert dense de Bk et on démontre que ces plongements relient les structures quasi-Hamiltoniennes. Finalement, on utilise ce résultat pour dériver une formule explicite pour la 2-forme quasi-Hamiltonienne sur Bk, généralisant la formule connue dans le cas de B₂ . / The aim of this thesis is to study various examples of tame and wild character varieties of complex curves.In the first part, we study an example of a tame character variety of the four-holed sphere with simple poles and exotic group G₂ as the structure group. We show that for a particular choice of conjugacy classes in G₂, the resulting affine symplectic variety of complex dimension two is isomorphic to the Fricke-Klein cubic surface, known from the classical case of the character variety for the group SL₂(C). Furthermore, we interpret the braid group orbits of size 7 in this affine surface as lines passing through triples of points in the Fano plane P²(F₂).In the second part, we establish multiple cases of the so-called „echo conjecture”, corresponding to the cases of Painleve I, II and IV differential equations. We show that for the Riemann sphere with one singular point and suitably chosen behavior at the singularity, there are three infinite families of wild character varieties of complex dimension two. In these families, the rank of the structure group is not bounded and goes to infinity. The main result of this part shows that in each family all the members are affine cubic surfaces, isomorphic to the phase spaces of the aforementioned Painleve equations. By computing the geometric invariat theory quotients, we provide explicit isomorphisms between the rings of functions of the arising affine varieties and relate the coefficients of the affine surfaces.The last part is dedicated to the study of a family of spaces generalizing the Painleve I and II hierarchies for higher rank linear groups, which is done by the means of quasi-Hamiltonian geometry. In particular, for each variety Bk in the hierarchy there is a group-valued moment map and they turn out to be the Euler's continuant polynomials. These in turn admit factorisations into products of shorter continuants and we show that for a continuant of length k, the distinct factorisations into continuants of length one are counted by the Catalan number Ck. Moreover, each such factorisation provides an embedding of the fusion product of k copies of GLn(C) onto a dense open subset of B_k and the quasi-Hamiltonian structures do match up. Finally, using this result we derive the formula for the quasi-Hamiltonian two form on the space Bk, which generalises the formula known for the case of B₂.
|
6 |
Singularités orbifoldes de la variété des caractères / Orbifold singularities of the character varietyGuerin, Clément 22 June 2016 (has links)
Dans cette thèse, nous nous intéressons à des singularités particulières dans les variétés de caractères. Dans le premier chapitre, on justifie que les caractères de représentations irréductibles d'un groupe fuchsien vers un groupe de Lie complexe semi-simple forment une orbifolde. Le lieu orbifold (i.e. l'ensemble des points dont l'isotropie n'est pas triviale) est constitué des caractères de représentations exceptionnelles. Dans le second chapitre, nous décrivons précisément le lieu orbifold quand le groupe de Lie est le groupe projectif linéaire sur un espace vectoriel complexe dont la dimension est un nombre premier. Dans le troisième et le quatrième chapitre nous cherchons à classifier les groupes d'isotropies possibles à conjugaison près apparaissant quand le groupe de Lie est respectivement un quotient du groupe spécial linéaire pour un espace vectoriel complexe de dimension finie quelconque dans le troisième chapitre et un quotient du groupe de spin complexe dans le quatrième chapitre. / Ln this thesis, we want to understand some singularities in the character variety. ln a first chapter, we justify that the characters of irreducible representations from a Fuchsian group to a complex semi-simple Lie group is an orbifold. The orbifold locus is, then, the characters of bad representations. ln the second chapter, we focus on the case where the Lie group is the projectif linear group over a complex vector space whose dimension is a prime number. ln particular we give an explicit description of this locus. ln the third and fourth chapter, we describe the isotropy groups (i.e. the centralizers of bad subgroups) arising in the cases when the Lie group is a quotient of the special linear group of a complex vector space of finite dimension (third chapter) and when the Lie group is a quotient of a complex spin group in the fourth chapter.
|
Page generated in 0.0562 seconds