Spelling suggestions: "subject:"characteristic model""
1 |
An Appraisal of the Characteristic Modes of Composite ObjectsAlroughani, Hamad 28 October 2013 (has links)
The theory of electromagnetic characteristic modes was published roughly forty years ago, for both conducting and penetrable objects. However, while the characteristic mode analysis of conducting objects has found renewed interest as a tool for antenna designers, computed results for the characteristic mode eigenvalues, eigencurrents and eigenfields for penetrable objects have not appeared, not even in the seminal papers on the subject. In this thesis both volume and surface integral equation formulations are used to compute the characteristic modes of penetrable objects for what appears to be the first time. This opens the way for the use of characteristic mode theory in the design of antennas made of penetrable material whose polarization current densities constitute the main radiating mechanism of the antenna. Volume formulations are shown to be reliable but computationally burdensome. It is demonstrated that surface formulations are computationally more efficient, but obtrude some non-physical modes in addition to the physical ones. Fortunately, certain field orthogonality checklists can be used to provide a straightforward means of unambiguously selecting only the physical modes. The sub-structure characteristic mode concept is extended to problems involving both perfectly conducting and penetrable materials. It is also argued that sub-structure modes can be viewed as characteristic modes that implicitly use modified Green’s functions, but without such Green’s functions being needed explicitly. This makes the concept really practical, since the desired modified Green’s functions are not known explicitly in most cases.
|
2 |
An Appraisal of the Characteristic Modes of Composite ObjectsAlroughani, Hamad January 2013 (has links)
The theory of electromagnetic characteristic modes was published roughly forty years ago, for both conducting and penetrable objects. However, while the characteristic mode analysis of conducting objects has found renewed interest as a tool for antenna designers, computed results for the characteristic mode eigenvalues, eigencurrents and eigenfields for penetrable objects have not appeared, not even in the seminal papers on the subject. In this thesis both volume and surface integral equation formulations are used to compute the characteristic modes of penetrable objects for what appears to be the first time. This opens the way for the use of characteristic mode theory in the design of antennas made of penetrable material whose polarization current densities constitute the main radiating mechanism of the antenna. Volume formulations are shown to be reliable but computationally burdensome. It is demonstrated that surface formulations are computationally more efficient, but obtrude some non-physical modes in addition to the physical ones. Fortunately, certain field orthogonality checklists can be used to provide a straightforward means of unambiguously selecting only the physical modes. The sub-structure characteristic mode concept is extended to problems involving both perfectly conducting and penetrable materials. It is also argued that sub-structure modes can be viewed as characteristic modes that implicitly use modified Green’s functions, but without such Green’s functions being needed explicitly. This makes the concept really practical, since the desired modified Green’s functions are not known explicitly in most cases.
|
3 |
Some relationships between characteristic modes and Inagaki modes for use in scattering and radiation problemsLiu, Duixian January 1986 (has links)
No description available.
|
4 |
Multi-Objective Algorithms for Coupled Optimization of Mechanical and Electromagnetic SystemsBrinster, Irina 01 December 2014 (has links)
Modern mobile devices incorporate several transmit and receive antennas in highly constrained volumes. As miniaturized antennas impinge upon fundamental physical limits on efficiency, new design approaches are required to support ever-smaller devices with more varied and robust communication performance. We take an unconventional design approach in which an arbitrary metallic structure and its components can be modified to act as efficient radiators. Using eigenmode analysis and the theory of characteristic modes (TCM), we develop algorithms that allow for effective integration of antennas with mechanical structures and enable structure reuse, helping meet stringent space and weight constraints without sacrificing electromagnetic performance. We derive TCM-based objectives for effective exploration of the design space in the electromagnetic (EM) domain. The procedure includes a feed placement technique that identifies viable excitation points on the structure without running full EM analysis. In addition to computational advantages, this provides a point of comparison among a variety of antenna shapes. Empirical evaluation shows that the estimates of radiated power from TCM can effectively guide optimization toward structures with improved radiating properties. Automated feed placement increases the proportion of good-quality designs among the explored candidates by consistently selecting the most promising feed positions. The ability of the TCM-based algorithm to direct the search is further validated on two real-world applications: integration of a GPS antenna with the frame of a mobile phone and integration of an S-band antenna with the frame of a small spacecraft. To the best of our knowledge, this is the first work that applies TCM to automated optimization of antennas. We investigate how to leverage domain-specific methods and solution representations in the coupled optimization of antennas. We develop a novel multiobjective optimization framework based on local search in each domain. In this procedure, the local optima in each objective are obtained and modified to create a new population of candidate designs. On a number of benchmark problems, the proposed technique is competitive with leading multi-objective algorithms: while it finds a less uniform distribution along the Pareto front, it shows better performance in locating solutions at the boundaries of the tradeoff curve. The local search algorithm is successfully applied to topology optimization of an antenna for a CubeSat, a small low-cost satellite platform.
|
5 |
Design and Location Optimization of Electrically Small Antennas Using Modal TechniquesChalas, Jeffrey Michael 18 May 2015 (has links)
No description available.
|
6 |
EXCITATION AND ANALYSIS OF CHARACTERISTIC MODES ON COMPLEX ANTENNA STRUCTURESStrojny, Brandan Thomas 31 March 2011 (has links)
No description available.
|
7 |
Systematic Design of Multiple Antenna Systems Using Characteristic ModesRaines, Bryan Dennis 29 July 2011 (has links)
No description available.
|
8 |
NOVEL METHOD TO CONTROL ANTENNA CURRENTS BASED ON THEORY OF CHARACTERISTIC MODESElghannai, Ezdeen Ahmed January 2016 (has links)
No description available.
|
9 |
Design and Analysis of 5G/IoT Antennas for sub-6 GHz Applications using Characteristic Modes Analysis.Molins Benlliure, Jaime 30 December 2024 (has links)
[ES] El escenario actual de las comunicaciones inalámbricas está definido por el progresivo despliegue del 5G que ha establecido altos estándares en tasas binarias, fiabilidad, eficiencia, número de conexiones y latencia. El despliegue inicial del 5G se ha producido en las bandas denominadas sub-6 GHz debido a su compatibilidad con la infraestructura ya desplegada. Una de las novedades del 5G es la subdivisión en pequeñas celdas que requerirá la instalación de puntos de acceso interiores mediante antenas de múltiples puertos, altamente eficientes y compatibles con la tecnología MIMO. Como consecuencia, la necesidad de este tipo de antenas ha experimentado un crecimiento en su demanda. El diseño de este tipo de antenas resulta complejo y requiere de muchos recursos computacionales cuando el número de puertos es elevado. Esta tesis aborda el diseño y análisis de antenas respaldadas por cavidades con alimentación múltiple con la novedad de introducir nuevas metodologías basadas en el análisis de modos característicos (CMA) para el diseño sistemático de este tipo de soluciones para simplificar el proceso de diseño y simulación. Además, todas las soluciones se analizan desde la perspectiva de canal para su evaluación en un entorno real de un sistema con tecnología MIMO.
Otro desafío que ha supuesto el sistema 5G es el crecimiento exponencial en la demanda de pequeñas antenas para su integración en dispositivos de tamaño reducido debido al desarrollo de nuevas aplicaciones para el Internet de las Cosas (IoT). En particular, las bandas ISM de 433 MHz, 868/915 MHz y 2.4 GHz son las que más atención han recibido para albergar estas aplicaciones. Las técnicas de miniaturización se vuelven imprescindibles cuando el espacio es tan limitado y considerando que el dispositivo puede ser incluso entre 10 y 20 veces más pequeño que la longitud de onda de la frecuencia de la banda utilizada. Los fabricantes de antenas han introducido antenas cerámicas conocidas como chip antenas que se instalan en placas de circuito impreso (PCB) como solución a esta problemática. Junto con las antenas chip, se proporcionan unas pautas de instalación genéricas en las que falta información del funcionamiento físico de la antena. En esta tesis, varias antenas tipo chip se han diseñado y fabricado con tecnología LTCC para proporcionar más información sobre sus propiedades de radiación y su localización óptima para excitar los modos deseados de la PCB donde se instalan. Un nuevo parámetro basado en CMA se ha propuesto mediante la correlación entre los campos totales y modales para proporcionar información física sobre esta temática. / [CA] L'escenari actual de les comunicacions sense fils està definit pel progressiu desplegament del 5G que ha establit alts estàndards en taxes binàries, fiabilitat, eficiència, nombre de connexions i latència. El desplegament inicial del 5G s'ha produït en les bandes denominades sub-6 GHz a causa de la seua compatibilitat amb la infraestructura ja desplegada. Una de les novetats del 5G és la subdivisió en xicotetes cèl·lules que requerirà la instal·lació de punts d'accés interiors que requeriran antenes de múltiples ports altament eficients compatibles amb la tecnologia MIMO. Com a consequencia, la necessitat d'este tipus d'antenes ha experimentat un creixement en la seua demanda. El disseny d'estes antenes es torna complex i requerix molts recursos computacionals quan s'augmenta el nombre de ports. Esta tesi aborda el disseny i anàlisi de solucions recolzades per cavitats amb alimentació múltiple amb la novetat d'introduir noves metodologies basades en l'anàlisi de modes característics (CMA) per simplificar el procés de disseny i simulació de estes antenes. A més, totes les solucions s'analitzen des de la perspectiva de canal per a la seua avaluació en un entorn real de sistema MIMO.
Un altre desafiament que ha suposat el sistema 5G és el creixement exponencial en la demanda d'integració de xicotetes antenes en dispositius de tamany reduït i el desenvolupament de noves aplicacions per a la Internet de les Coses (IoT). En particular, les bandes ISM que operen a 433 MHz, 868/915 MHz i 2.4 GHz són les mes demandades per a estes aplicacions. Les tècniques de miniaturització es tornen imprescindibles quan l'espai és tan limitat i considerant que el dispositiu pot ser fins i tot entre 10 i 20 vegades més xicotet que la longitud d'ona de la banda de freqüència utilitzada. Els fabricants d'antenes han introduït antenes tipus xip ceràmiques instal·lades en plaques de circuit imprés (PCB) com a solució a esta problematica. Juntament amb les antenes xip, es proporcionen unes pautes d'instal·lació genèriques sense cap justificació física adicional. En esta tesi, diverses antenes tipus xip s'han dissenyat i fabricat internament amb tecnologia LTCC per a proporcionar més informació sobre les seues propietats de radiació i la seua localització òptima per a excitar els modes desitjats de la PCB on s'instal·len. Un nou paràmetre basat en CMA s'ha proposat mitjançant la correlació entre els camps totals i modals per a proporcionar informació física sobre esta temàtica. / [EN] The current wireless communication scenario is defined by the progressive deployment of the 5$^{th}$ generation (5G) wireless communication system, which has established high standards in data rate, reliability, efficiency, number of connections, and latency. The early deployment of the 5G has taken place in the so-called sub-6 GHz bands due to its compatibility with the previously deployed infrastructure. One of the novelties of the 5G is the subdivision into small cell coverage areas, which will require the installation of indoor access points requiring multiple port antennas with high efficiency compatible with the Multiple-Input Multiple-Output (MIMO) technology. As a result, the need for this kind of antenna has increased. The design of these antennas becomes complex and time-demanding when the number of ports is increased. This thesis deals with the design and analysis of multiple-fed cavity-backed solutions with the novelty of introducing new characteristic modes analysis (CMA) based methodologies for the systematic design of this kind of solution, which simplifies the design and calculation process. In addition, all the solutions are analyzed regarding the channel perspective for their evaluation in a real MIMO system environment.
Another challenge that brings the 5G system is the exponential growth in the demand for the integration of small antennas in size-limited devices introduced by the all-connected concept and the development of new applications for the Internet of Things (IoT). In particular, the 433 MHz, 868/915 MHz, and 2.4 GHz ISM bands are mainly used for these applications. Miniaturization techniques become imperative in such a limited space, considering that the device can be even 10-20 times smaller than the wavelength of the operating band. Antenna manufacturers have introduced ceramic chip antennas installed in printed circuit boards (PCBs) as the solution for this scenario. They are provided with generic installation guidelines without further physical insight. In this thesis, low-temperature co-fired ceramic (LTCC) chip antennas have been designed and fabricated in-house to provide more information about their radiation performance and optimum allocation to excite the desired modes on the installed PCB. A novel CMA parameter based on the correlation between total and modal fields is introduced to provide physical insight into this topic. / Molins Benlliure, J. (2024). Design and Analysis of 5G/IoT Antennas for sub-6 GHz Applications using Characteristic Modes Analysis [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/213673
|
10 |
Antennes miniatures, large bande et superdirectives à charges optimisées par l'analyse des modes caractéristiques / Wideband and superdirective small antennas with embedded optimized loads using the characteristic modes theoryJaafar, Hussein 18 August 2018 (has links)
L'évolution rapide dans les systèmes de communication sans fil nécessite plus de miniaturisation de divers composants électroniques en plus de l'élément majeur de la technologie sans fil : l'antenne. Dans ce cas, une antenne occupant un espace limité devrait être miniaturisée pour fonctionner aux bandes de communication souhaitées. Cependant, à mesure que la taille électrique de l'antenne diminue, ses performances se dégradent considérablement et sa bande passante, son efficacité et sa directivité sont limitées. Les techniques classiques de réduction de la taille avec chargement de matériau et mise en forme géométrique de l'antenne souffrent d'une bande passante étroite et d'une faible efficacité de rayonnement. D'autre part, les tentatives d'augmenter la directivité des petites antennes en utilisant des réseaux superdirectifs sont également associées à une faible efficacité de rayonnement bande passante très étroite. Pour pallier ces inconvénients, nous proposons de booster les performances des antennes compactes en utilisant des charges réactives embarquées. En plaçant correctement les charges (actives ou passives) à l'intérieur de l'antenne, il est possible de contrôler les courants pour améliorer de manière significative les performances de l'antenne en termes de bande passante et de directivité. Cependant, pour un succès des critères de chargement, il est obligatoire d'analyser les modes naturellement supportés par l'antenne étudiée. On les appelle les modes caractéristiques, qui fournissent des aperçus physiques profonds sur le comportement de l'antenne et ses modes de rayonnement. En combinant cette théorie avec l'algorithme d'optimisation, il devient possible de manipuler de manière optimale les courants à l'intérieur de l'antenne en utilisant des charges réactives pour obtenir des conceptions large bande, superdirectives et efficaces. / The rapid evolution in the wireless communication systems requires more miniaturization of various electronic components in addition to the major element of the wireless technology: the antenna. In this case, an antenna occupying a limited space should be miniaturized in order to operate at the desired communication bands. However, as the electrical size of the antenna decreases, its performance degrades dramatically and it becomes limited in bandwidth, efficiency, and directivity. Classical size reduction techniques with material loading and geometry shaping of the antenna suffer from narrow bandwidth and low radiation efficiency. On the other hand, attempts to increase the directivity of small antennas using superdirective arrays are also associated with low radiation efficiency and very narrow bandwidth. To overcome these drawbacks, we propose boosting the performance of compact antennas using embedded reactive loads. By properly placing loads (active or passive) inside the antenna, it is possible to control the currents to significantly enhance the antenna performance in terms of bandwidth and directivity. Yet, for a successful loading criteria, it is mandatory to analyze the modes that are naturally supported by the antenna under study. These are called the characteristic modes, which provide deep physical insights about the behaviour of the antenna and its radiating modes. By combining this theory with and optimization algorithm, it becomes possible to optimally manipulate the currents inside the antenna using reactive loads to achieve wideband, superdirective and efficient designs.
|
Page generated in 0.1052 seconds