• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of Electron Bombardment on the Size Distribution of Negatively Charged Droplets Produced by Electrospray

Shi, Xiaochuan 09 January 2012 (has links)
This study explores an innovative approach to control the droplet size distribution produced by an electrospray with the intention of eventually being able to deliver precisely controlled quantities of precursor materials for nanofabrication. The technique uses a thermionic cathode to charge the droplets in excess of the Rayleigh limit, leading to droplet breakup or fission. The objective of these experiments was to assess whether the proposed technique could be used to produce a new droplet size distribution with a smaller mean droplet diameter without excessively broadening the distribution. An electrospray was produced in a vacuum chamber using a dilute mixture of ionic liquid. During their transit from the capillary source to a diagnostic instrument, the resulting droplets were exposed to an electron stream with controlled flux and kinetic energy. The droplets were sampled in an inductive charge detector to characterize changes in the size distribution. A positively biased anode electrode was used to collect electron current during droplet exposure. This collected current was used as the primary control variable and used as a measure of the electron flux. The anode bias voltage was a secondary control variable and used as a measure of the electron energy. In a series of seven tests, two sets showed evidence of fission having occurred resulting in the formation of two droplet populations after electron bombardment. Three sets of results showed evidence of a single droplet population after electron bombardment, but shifted to a smaller mean diameter, and one set of results was inconclusive. Because of the large standard deviation in the droplet diameter distributions, the two cases in which a second population was evident were the strongest indication that droplet fission had occurred.
2

Miniaturized Electrostatic Ion Beam Trap Mass Analyzer

Wang, Junting 13 June 2013 (has links) (PDF)
The electrostatic ion beam trap (EIBT) was designed by D. Zajfman during the previous decade. This ion trap combines many properties of the Fourier-transform ion cyclotron resonance (FTICR) mass analyzer and time-of-flight (TOF) mass analyzer. There are several advantages for the electrostatic ion beam trap. First, large mass-to-charge particles in an electrostatic field could be easier to analyze. Second, there is a folded flight path, which could make the mass analyzer smaller compared to conventional TOF mass analyzer. This principle of operation of this ion trap is analogous to an optical resonator. The ions are trapped in a voltage valley and oscillate between the two parallel sets of mirror electrodes with high voltages. In this thesis, I first describe a new type of miniaturized electrostatic ion beam trap mass analyzer that consists of two printed circuit boards (PCBs). The facing surfaces of these boards are imprinted with copper electrodes. The center of the boards is field free and at ground potential with ion mirrors and Einzel lenses on either side. A charge detector is attached to the center for recording the time-dependant motion of the ions in the field. The PCB-based EIBT design is easier to construct than the original EIBT mass analyzer. The electrostatic fields are optimized by adjusting the potential on the mirror electrodes as well as the geometry of the electrodes. Although nondestructive charge detection is much less sensitive for small ions, this detection is ideal for analysis of large ions. The planar electrostatic ion beam trap is inexpensive, small, and simple to operate. The PCB EIBT device was designed, built, and tested using metal samples such as copper and nickel. The electric field of the PCB EIBT is not the same as that of the original EIBT. Unfortunately, there were no ion signals captured in image charge detector. Another new type of miniaturized electrostatic ion beam trap was made by depositing electrodes onto Kapton film. Seven thin tin/copper traces (1 mm wide by 0.015 mm thick) were deposited onto each side of a flat, flexible circuit board substrate (Kapton film 0.15 mm thickness). The film was rolled to form a cylinder. The flexible EIBT is small (4.5 cm × 8 cm), and lightweight (~1 g). This device was tested using laser ablation of CsI. The CsI signals were detected by the charge detector, amplified and sent to the oscilloscope. Fourier transformation was used to convert the data to the frequency domain spectrum. The resolution of Cs+ is around 1000 (m/Δm) from initial flexible EIBT test. The mass accuracy of the Cs+ peak is better than 0.1%.
3

Kondo Physics and Many-Body Effects in Quantum Dots and Molecular Junctions

Ruiz-Tijerina, David A. January 2013 (has links)
No description available.

Page generated in 0.041 seconds